Home Natuur Rainforest transformation reallocates vitality from inexperienced to brown meals webs

Rainforest transformation reallocates vitality from inexperienced to brown meals webs

0
Rainforest transformation reallocates vitality from inexperienced to brown meals webs


  • IPBES. World evaluation report on biodiversity and ecosystem companies of the Intergovernmental Science-Coverage Platform on Biodiversity and Ecosystem Providers. Zenodo https://doi.org/10.5281/ZENODO.3831673 (2019).

  • Laurance, W. F., Sayer, J. & Cassman, Okay. G. Agricultural growth and its impacts on tropical nature. Traits Ecol. Evol. 29, 107–116 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Guillaume, T. et al. Carbon prices and advantages of Indonesian rainforest conversion to plantations. Nat. Commun. 9, 2388 (2018).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Rembold, Okay., Mangopo, H., Tjitrosoedirdjo, S. S. & Kreft, H. Plant variety, forest dependency and alien plant invasions in tropical agricultural landscapes. Biol. Conserv. 213, 234–242 (2017).

    Article 

    Google Scholar
     

  • Barnes, A. D. et al. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nat. Ecol. Evol. 1, 1511–1519 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Turner, E. C. & Foster, W. A. The affect of forest conversion to grease palm on arthropod abundance and biomass in Sabah, Malaysia. J. Trop. Ecol. 25, 23–30 (2009).

    Article 

    Google Scholar
     

  • Currie, D. J. Power and large-scale patterns of animal- and plant-species richness. Am. Nat. 137, 27–49 (1991).

    Article 

    Google Scholar
     

  • Potapov, A. M., Klarner, B., Sandmann, D., Widyastuti, R. & Scheu, S. Linking dimension spectrum, vitality flux and trophic multifunctionality in soil meals webs of tropical land-use programs. J. Anim. Ecol. 88, 1845–1859 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Schwarz, B. et al. Warming alters the energetic construction and performance however not resilience of soil meals webs. Nat. Clim. Change 7, 895–900 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Towards a metabolic principle of ecology. Ecology 85, 1771–1789 (2004).

    Article 

    Google Scholar
     

  • Barnes, A. D. et al. Power flux: the hyperlink between multitrophic biodiversity and ecosystem functioning. Traits Ecol. Evol. 33, 186–197 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnes, A. D. et al. Penalties of tropical land use for multitrophic biodiversity and ecosystem functioning. Nat. Commun. 5, 5351 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Thakur, M. P. Local weather warming and trophic mismatches in terrestrial ecosystems: the inexperienced–brown imbalance speculation. Biol. Lett. 16, 20190770 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • de Vries, F. T. et al. Soil meals internet properties clarify ecosystem companies throughout European land use programs. Proc. Natl Acad. Sci. USA 110, 14296–14301 (2013).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Barnes, A. D. et al. Biodiversity enhances the multitrophic management of arthropod herbivory. Sci. Adv. 6, eabb6603 (2020).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Scheu, S. Crops and generalist predators as hyperlinks between the below-ground and above-ground system. Fundamental Appl. Ecol. 2, 3–13 (2001).

    Article 

    Google Scholar
     

  • Rosenberg, et al. The worldwide biomass and variety of terrestrial arthropods. Sci. Adv. 9, eabq4049 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Drescher, J. et al. Ecological and socio-economic capabilities throughout tropical land use programs after rainforest conversion. Phil. Trans. R. Soc. B 371, 20150275 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellwood, M. D. F. & Foster, W. A. Doubling the estimate of invertebrate biomass in a rainforest cover. Nature 429, 549–551 (2004).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Petersen, H. & Luxton, M. A comparative evaluation of soil fauna populations and their position in decomposition processes. Oikos 39, 288–388 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Dial, R. J., Ellwood, M. D. F., Turner, E. C. & Foster, W. A. Arthropod abundance, cover construction and microclimate in a Bornean lowland tropical rain forest. Biotropica 38, 643–652 (2006).

    Article 

    Google Scholar
     

  • Raich, J. W., Clark, D. A., Schwendenmann, L. & Wooden, T. E. Aboveground tree progress varies with belowground carbon allocation in a tropical rainforest surroundings. PLoS ONE 9, e100275 (2014).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Jochum, M. et al. Lowering stoichiometric useful resource high quality drives compensatory feeding throughout trophic ranges in tropical litter invertebrate communities. Am. Nat. 190, 131–143 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Stork, N. E. What number of species of bugs and different terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Terborgh, J., Robinson, S. Okay., Parker, T. A., Munn, C. A. & Pierpont, N. Construction and group of an Amazonian forest chicken neighborhood. Ecol. Monogr. 60, 213–238 (1990).

    Article 

    Google Scholar
     

  • Mueller, Okay. E. et al. Mild, earthworms and soil assets as predictors of variety of 10 soil invertebrate teams throughout monocultures of 14 tree species. Soil Biol. Biochem. 92, 184–198 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Krashevska, V., Klarner, B., Widyastuti, R., Maraun, M. & Scheu, S. Influence of tropical lowland rainforest conversion into rubber and oil palm plantations on soil microbial communities. Biol. Fertil. Soil. 51, 697–705 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Grass, I. et al. Commerce-offs between multifunctionality and revenue in tropical smallholder landscapes. Nat. Commun. 11, 1186 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Edwards, D. P. et al. Selective-logging and oil palm: multitaxon impacts, biodiversity indicators and trade-offs for conservation planning. Ecol. Appl. 24, 2029–2049 (2014).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Prabowo, W. E. et al. Chicken responses to lowland rainforest conversion in Sumatran smallholder landscapes, Indonesia. PLoS ONE 11, e0154876 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramos, D. et al. Rainforest conversion to rubber and oil palm reduces abundance, biomass and variety of cover spiders. PeerJ 10, e13898 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulmatiski, A. & Beard, Okay. H. Lengthy-term plant progress legacies overwhelm short-term plant progress results on soil microbial neighborhood construction. Soil Biol. Biochem. 43, 823–830 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Le Provost, G. et al. Contrasting responses of above- and belowground variety to a number of parts of land-use depth. Nat. Commun. 12, 3918 (2021).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Zhou, Z., Krashevska, V., Widyastuti, R., Scheu, S. & Potapov, A. Tropical land use alters purposeful variety of soil meals webs and results in monopolization of the detrital vitality channel. eLife 11, e75428 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Potapov, A. et al. Oil palm and rubber growth facilitates earthworm invasion in Indonesia. Biol. Invasions 23, 2783–2795 (2021).

    Article 

    Google Scholar
     

  • Potapov, A. M. et al. Purposeful losses in floor spider communities on account of habitat construction degradation below tropical land-use change. Ecology 101, e02957 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Rakotomalala, A. A. N. A., Ficiciyan, A. M. & Tscharntke, T. Intercropping enhances helpful arthropods and controls pests: a scientific evaluation and meta-analysis. Agric. Ecosyst. Environ. 356, 108617 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Camarretta, N. et al. Utilizing airborne laser scanning to characterize land-use programs in a tropical panorama primarily based on vegetation structural metrics. Distant Sens. 13, 4794 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Tscharntke, T. et al. Conservation organic management and enemy variety on a panorama scale. Biol. Management 43, 294–309 (2007).

    Article 

    Google Scholar
     

  • Corley, R. H. V. & Tinker, P. B. H. The Oil Palm (John Wiley & Sons, 2015).

  • Potapov, A. M. Multifunctionality of belowground meals webs: useful resource, dimension and spatial vitality channels. Biol. Rev. Camb. Philos. Soc. 97, 1691–1711 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Krashevska, et al. Micro-decomposer communities and decomposition processes in tropical lowlands as affected by land use and litter sort. Oecologia 187, 255–266 (2018).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Hyodo, F. et al. Gradual enrichment of 15N with humification of diets in a below-ground meals internet: relationship between 15N and weight loss plan age decided utilizing 14C. Funct. Ecol. 22, 516–522 (2008).

    Article 

    Google Scholar
     

  • Hannula, S. E. & Morriën, E. Will fungi clear up the carbon dilemma? Geoderma 413, 115767 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Susanti, W. I., Pollierer, M. M., Widyastuti, R., Scheu, S. & Potapov, A. Conversion of rainforest to grease palm and rubber plantations alters vitality channels in soil meals webs. Ecol. Evol. 9, 9027–9039 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rooney, N. & McCann, Okay. S. Integrating meals internet variety, construction and stability. Traits Ecol. Evol. 27, 40–46 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Hyodo, F., Uchida, T., Kaneko, N. & Tayasu, I. Use of radiocarbon to estimate weight loss plan ages of earthworms throughout totally different local weather areas. Appl. Soil Ecol. 62, 178–183 (2012).

    Article 

    Google Scholar
     

  • Garnier, P., Makowski, D., Hedde, M. & Bertrand, M. Modifications in soil carbon mineralization associated to earthworm exercise rely on the time since inoculation and their density in soil. Sci. Rep. 12, 13616 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Angst, G. et al. Earthworms as catalysts within the formation and stabilization of soil microbial necromass. Glob. Change Biol. 28, 4775–4782 (2022).

    Article 

    Google Scholar
     

  • Joly, F.-X. et al. Detritivore conversion of litter into faeces accelerates natural matter turnover. Commun. Biol. 3, 660 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao, F. et al. Microbial carbon use effectivity promotes world soil carbon storage. Nature 618, 981–985 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Buchkowski, R. W. & Lindo, Z. Stoichiometric and structural uncertainty in soil meals internet fashions. Funct. Ecol. 35, 288–300 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Potapov, A. M. et al. Feeding habits and multifunctional classification of soil-associated customers from protists to vertebrates. Biol. Rev. Camb. Philos. Soc. 97, 1057–1117 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ashton‐Butt, A. et al. Replanting of first‐cycle oil palm ends in a second wave of biodiversity loss. Ecol. Evol. 9, 6433–6443 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao, H.-H. et al. Software of oil palm empty fruit bunch results on soil biota and capabilities: a case research in Sumatra, Indonesia. Agric. Ecosyst. Environ. 256, 105–113 (2018).

    Article 

    Google Scholar
     

  • Darras, Okay. F. A. et al. Decreasing fertilizer and avoiding herbicides in oil palm plantations—ecological and financial valuations. Entrance. For. Glob. Change 2, 65 (2019).

  • Teuscher, M. et al. Experimental biodiversity enrichment in oil-palm-dominated landscapes in Indonesia. Entrance. Plant Sci. 7, 1538 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashraf, M. et al. Alley-cropping system can enhance arthropod biodiversity and ecosystem capabilities in oil palm plantations. Agric. Ecosyst. Environ. 260, 19–26 (2018).

    Article 

    Google Scholar
     

  • Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen, M. C. Main forest cowl loss in Indonesia over 2000–2012. Nat. Clim. Change 4, 730–735 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Allen, Okay., Corre, M. D., Kurniawan, S., Utami, S. R. & Veldkamp, E. Spatial variability surpasses land-use change results on soil biochemical properties of transformed lowland landscapes in Sumatra, Indonesia. Geoderma 284, 42–50 (2016).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Sohlström, E. H. et al. Making use of generalized allometric regressions to foretell reside physique mass of tropical and temperate arthropods. Ecol. Evol. 8, 12737–12749 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darras, Okay. et al. BioSounds: an open-source, on-line platform for ecoacoustics. F1000 Res. 9, 1224 (2020).

  • Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).

    Article 

    Google Scholar
     

  • Azhar, A. et al. Rainforest conversion to money crops reduces abundance, biomass and species richness of parasitoid wasps in Sumatra, Indonesia. Agric. For. Entomol. 24, 506–515 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Nazarreta, R. et al. Rainforest conversion to smallholder plantations of rubber or oil palm results in species loss and neighborhood shifts in cover ants (Hymenoptera: Formicidae). Myrmecol. Information 30, 175–186 (2020).

  • Kasmiatun, et al. Rainforest conversion to smallholder money crops results in various declines of beetles (Coleoptera) on Sumatra. Biotropica 55, 119–131 (2023).

    Article 

    Google Scholar
     

  • Mawan, A. et al. Response of arboreal Collembola communities to the conversion of lowland rainforest into rubber and oil palm plantations. BMC Ecol. Evol. 22, 144 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klarner, B. et al. Trophic niches, variety and neighborhood composition of invertebrate high predators (Chilopoda) as affected by conversion of tropical lowland rainforest in Sumatra (Indonesia). PLoS ONE 12, e0180915 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Potapov, A. M., Scheu, S. & Tiunov, A. V. Trophic consistency of supraspecific taxa in below-ground invertebrate communities: comparability throughout lineages and taxonomic ranks. Funct. Ecol. 33, 1172–1183 (2019).

    Article 

    Google Scholar
     

  • Petersen, H. Estimation of dry weight, contemporary weight and calorific content material of assorted collembolan species. Pedobiologia 15, 222–243 (1975).

  • Mercer, R. D., Gabriel, A. G. A., Barendse, J., Marshall, D. J. & Chown, S. L. Invertebrate physique sizes from Marion Island. Antarct. Sci. 13, 135–143 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Hale, C. M., Reich, P. B. & Frelich, L. E. Allometric equations for estimation of ash-free dry mass from size measurements for chosen European earthworm species (Lumbricidae) within the Western Nice Lakes area. Am. Midl. Nat. 151, 179–185 (2004).

    Article 

    Google Scholar
     

  • Brose, U. et al. Foraging principle predicts predator–prey vitality fluxes. J. Anim. Ecol. 77, 1072–1078 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brose, U. et al. Predator traits decide food-web structure throughout ecosystems. Nat. Ecol. Evol. 3, 919–927 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Gauzens, B. et al. fluxweb: an R package deal to simply estimate vitality fluxes in meals webs. Strategies Ecol. Evol. 10, 270–279 (2019).

    Article 

    Google Scholar
     

  • Peschel, Okay., Norton, R., Scheu, S. & Maraun, M. Do oribatid mites reside in enemy-free area? Proof from feeding experiments with the predatory mite Pergamasus septentrionalis. Soil Biol. Biochem. 38, 2985–2989 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Ehnes, R. B., Rall, B. C. & Brose, U. Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. Ecol. Lett. 14, 993–1000 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Meijide, A. et al. Influence of forest conversion to grease palm and rubber plantations on microclimate and the position of the 2015 ENSO occasion. Agric. For. Meteorol. 252, 208–219 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Jochum, M. et al. For flux’s sake: common issues for energy-flux calculations in ecological communities. Ecol. Evol. 11, 12948–12969 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Becoming linear mixed-effects fashions utilizing lme4. J. Stat. Softw. 67, 1–48 (2015).

  • Fox, J. & Weisberg, S. An R Companion to Utilized Regression (Sage, 2011).

  • Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Blended Results Fashions and Extensions in Ecology with R (Springer Science & Enterprise Media, 2009).

  • Pinheiro, J. & Bates, D. M. Blended-Results Fashions in S and S-PLUS (Springer, 2000).

  • Digel, C., Curtsdotter, A., Riede, J., Klarner, B. & Brose, U. Unravelling the advanced construction of forest soil meals webs: larger omnivory and extra trophic ranges. Oikos 123, 1157–1172 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wolkovich, E. M. Reticulated channels in soil meals webs. Soil Biol. Biochem. 102, 18–21 (2016).

    Article 
    CAS 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here