Sung, H. et al. World most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 nations. CA Most cancers J. Clin. 71, 209–249 (2021).
Llovet, J. M. et al. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 7, 6 (2021).
Villanueva, A. Hepatocellular Carcinoma. N. Engl. J. Med. 380, 1450–1462 (2019).
The ICGC/TCGA Pan-Most cancers Evaluation of Entire Genomes Consortium. Pan-cancer evaluation of entire genomes. Nature 578, 82–93 (2020).
Rheinbay, E. et al. Analyses of non-coding somatic drivers in 2,658 most cancers entire genomes. Nature 578, 102–111 (2020).
Alexandrov, L. B. et al. The repertoire of mutational signatures in human most cancers. Nature 578, 94–101 (2020).
Li, Y. et al. Patterns of somatic structural variation in human most cancers genomes. Nature 578, 112–121 (2020).
Gerstung, M. et al. The evolutionary historical past of two,658 cancers. Nature 578, 122–128 (2020).
Fujimoto, A. et al. Entire-genome mutational panorama and characterization of noncoding and structural mutations in liver most cancers. Nat. Genet. 48, 500–509 (2016).
Letouze, E. et al. Mutational signatures reveal the dynamic interaction of danger elements and mobile processes throughout liver tumorigenesis. Nat. Commun. 8, 1315 (2017).
Gao, Q. et al. Built-in proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell 179, 561–577 (2019).
Sung, W. Ok. et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet. 44, 765–769 (2012).
Kan, Z. et al. Entire-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res. 23, 1422–1433 (2013).
Xue, R. et al. Variable intra-tumor genomic heterogeneity of a number of lesions in sufferers with hepatocellular carcinoma. Gastroenterology 150, 998–1008 (2016).
Schulze, Ok. et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 47, 505–511 (2015).
Imielinski, M., Guo, G. & Meyerson, M. Insertions and deletions goal lineage-defining genes in human cancers. Cell 168, 460–472 (2017).
Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity throughout 2,658 human most cancers genomes. Cell 184, 2239–2254 (2021).
Martincorena, I. et al. Tumor evolution. Excessive burden and pervasive constructive collection of somatic mutations in regular human pores and skin. Science 348, 880–886 (2015).
Tarabichi, M. et al. Impartial tumor evolution? Nat. Genet. 50, 1630–1633 (2018).
Ng, S. W. Ok. et al. Convergent somatic mutations in metabolism genes in power liver illness. Nature 598, 473–478 (2021).
Kim, H. et al. Extrachromosomal DNA is related to oncogene amplification and poor consequence throughout a number of cancers. Nat. Genet. 52, 891–897 (2020).
Deshpande, V. et al. Exploring the panorama of focal amplifications in most cancers utilizing AmpliconArchitect. Nat. Commun. 10, 392 (2019).
Stephens, P. J. et al. Large genomic rearrangement acquired in a single catastrophic occasion throughout most cancers growth. Cell 144, 27–40 (2011).
Baca, S. C. et al. Punctuated evolution of prostate most cancers genomes. Cell 153, 666–677 (2013).
Nik-Zainal, S. et al. The life historical past of 21 breast cancers. Cell 149, 994–1007 (2012).
Cortes-Ciriano, I. et al. Complete evaluation of chromothripsis in 2,658 human cancers utilizing whole-genome sequencing. Nat. Genet. 52, 331–341 (2020).
Alexandrov, L. B. et al. Signatures of mutational processes in human most cancers. Nature 500, 415–421 (2013).
Satriano, L., Lewinska, M., Rodrigues, P. M., Banales, J. M. & Andersen, J. B. Metabolic rearrangements in major liver cancers: trigger and penalties. Nat. Rev. Gastroenterol. Hepatol. 16, 748–766 (2019).
Guo, L. et al. Single-cell DNA sequencing reveals punctuated and gradual clonal evolution in hepatocellular carcinoma. Gastroenterology 162, 238–252 (2022).
Xue, R. et al. Genomic and transcriptomic profiling of mixed hepatocellular and intrahepatic cholangiocarcinoma reveals distinct molecular subtypes. Most cancers Cell 35, 932–947 (2019).
Wu, S. et al. Round ecDNA promotes accessible chromatin and excessive oncogene expression. Nature 575, 699–703 (2019).
Xue, R. et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 612, 141–147 (2022).
Cibulskis, Ok. et al. Delicate detection of somatic level mutations in impure and heterogeneous most cancers samples. Nat. Biotechnol. 31, 213–219 (2013).
Kim, S. et al. Strelka2: quick and correct calling of germline and somatic variants. Nat. Strategies 15, 591–594 (2018).
Lawrence, M. S. et al. Mutational heterogeneity in most cancers and the seek for new cancer-associated genes. Nature 499, 214–218 (2013).
Martincorena, I. et al. Common patterns of choice in most cancers and somatic tissues. Cell 171, 1029–1041 (2017).
Mularoni, L., Sabarinathan, R., Deu-Pons, J., Gonzalez-Perez, A. & López-Bigas, N. OncodriveFML: a normal framework to establish coding and non-coding areas with most cancers driver mutations. Genome Biol. 17, 128 (2016).
Lawrence, M. S. et al. Discovery and saturation evaluation of most cancers genes throughout 21 tumour varieties. Nature 505, 495–501 (2014).
Zhu, H. et al. Candidate most cancers driver mutations in distal regulatory parts and long-range chromatin interplay networks. Mol. Cell 77, 1307–1321 (2020).
Liu, M., Wu, Y., Jiang, N., Boot, A. & Rozen, S. G. mSigHdp: hierarchical Dirichlet course of combination modeling for mutational signature discovery. NAR Genom. Bioinform. 5, lqad005 (2023).
Boot, A. et al. In-depth characterization of the cisplatin mutational signature in human cell traces and in esophageal and liver tumors. Genome Res. 28, 654–665 (2018).
Favero, F. et al. Sequenza: allele-specific copy quantity and mutation profiles from tumor sequencing information. Ann. Oncol. 26, 64–70 (2015).
Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic strong tumours. Nature 575, 210–216 (2019).
Mermel, C. H. et al. GISTIC2.0 facilitates delicate and assured localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011).
Layer, R. M., Chiang, C., Quinlan, A. R. & Corridor, I. M. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 15, R84 (2014).
Mayakonda, A., Lin, D.-C., Assenov, Y., Plass, C. & Koeffler, H. P. Maftools: environment friendly and complete evaluation of somatic variants in most cancers. Genome Res. 28, 1747–1756 (2018).
Haas, B. J. et al. Accuracy evaluation of fusion transcript detection by way of read-mapping and de novo fusion transcript assembly-based strategies. Genome Biol. 20, 213 (2019).
Turner, Ok. M. et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543, 122–125 (2017).
deCarvalho, A. C. et al. Discordant inheritance of chromosomal and extrachromosomal DNA parts contributes to dynamic illness evolution in glioblastoma. Nat. Genet. 50, 708–717 (2018).
Tsai, S. Q. et al. CIRCLE-seq: a extremely delicate in vitro display for genome-wide CRISPR–Cas9 nuclease off-targets. Nat. Strategies 14, 607–614 (2017).
Koche, R. P. et al. Extrachromosomal round DNA drives oncogenic genome transforming in neuroblastoma. Nat. Genet. 52, 29–34 (2020).
Dobin, A. et al. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Anzalone, A. V. et al. Search-and-replace genome enhancing with out double-strand breaks or donor DNA. Nature 576, 149–157 (2019).