Home Natuur Speedy groundwater decline and a few instances of restoration in aquifers globally

Speedy groundwater decline and a few instances of restoration in aquifers globally

0
Speedy groundwater decline and a few instances of restoration in aquifers globally


  • Konikow, L. F. & Kendy, E. Groundwater depletion: a worldwide drawback. Hydrol. J. 13, 317–320 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Wada, Y. et al. International depletion of groundwater sources. Geophys. Res. Lett. 37, L20402 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Gleeson, T., Wada, Y., Bierkens, M. F. & Van Beek, L. P. Water steadiness of worldwide aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Werner, A. D. et al. An preliminary stock and indexation of groundwater mega-depletion instances. Water Resour. Manag. 27, 507–533 (2013).

    Article 

    Google Scholar
     

  • Famiglietti, J. S. The worldwide groundwater disaster. Nat. Clim. Change 4, 945–948 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T. & Eicker, A. International‐scale evaluation of groundwater depletion and associated groundwater abstractions: combining hydrological modeling with info from effectively observations and GRACE satellites. Water Resour. Res. 50, 5698–5720 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Richey, A. S. et al. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51, 5217–5238 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alley, W. M. & Alley, R. Excessive and Dry: Assembly the Challenges of the World’s Rising Dependence on Groundwater (Yale Univ. Press, 2017).

  • Rodell, M. et al. Rising tendencies in international freshwater availability. Nature 557, 651–659 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scanlon, B. R. et al. International water sources and the function of groundwater in a resilient water future. Nature Rev. Earth Environ. 4, 87–101 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Werner, A. D. et al. Seawater intrusion processes, investigation and administration: current advances and future challenges. Adv. Water Res. 51, 3–26 (2013).

    Article 

    Google Scholar
     

  • Shirzaei, M. et al. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2, 40–58 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Herrera-García, G. et al. Mapping the worldwide menace of land subsidence. Science 371, 34–36 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Barlow, P. M. & Leake, S. A. Streamflow depletion by wells—understanding and managing the results of groundwater pumping on streamflow. U.S. Geological Survey Round 1376. https://doi.org/10.3133/cir1376 (2012).

  • Döll, P. et al. Impression of water withdrawals from groundwater and floor water on continental water storage variations. J. Geodyn. 59, 143–156 (2012).

    Article 

    Google Scholar
     

  • de Graaf, I. E., Gleeson, T., Sutanudjaja, E. H. & Bierkens, M. F. Environmental circulate limits to international groundwater pumping. Nature 574, 90–94 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jasechko, S. & Perrone, D. International groundwater wells vulnerable to working dry. Science 372, 418–421 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Margat, J. & van der Gun, J. Groundwater Across the World: A Geographic Synopsis (CRC, 2013).

  • Rodell, M. & Reager, J. T. Water cycle science enabled by the GRACE and GRACE-FO satellite tv for pc missions. Nat. Water 1, 47–59 (2023).

    Article 

    Google Scholar
     

  • Cuthbert, M. O. et al. Noticed controls on resilience of groundwater to local weather variability in sub-Saharan Africa. Nature 572, 230–234 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shamsudduha, M. et al. The Bengal Water Machine: quantified freshwater seize in Bangladesh. Science 377, 1315–1319 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scanlon, B. R., Reedy, R. C., Faunt, C. C., Pool, D. & Uhlman, Okay. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona. Environ. Res. Lett. 11, 035013 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Lengthy, D. et al. (2020). South-to-North Water Diversion stabilizing Beijing’s groundwater ranges. Nat. Commun. 11, 3665 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayres, A. B., Meng, Okay. C. & Plantinga, A. J. Do environmental markets enhance on open entry? Proof from California groundwater rights. J. Political Econ. 129, 2817–2860 (2021).

    Article 

    Google Scholar
     

  • Buapeng, S. & Foster, S. Controlling groundwater abstraction and associated environmental degradation in metropolitan Bangkok – Thailand. World Financial institution Case Profile Assortment No. 20. https://documents1.worldbank.org/curated/en/750761468304831965/pdf/518250BRI0Box31GWMATE1CP1201Bangkok.pdf (World Financial institution, 2008).

  • Tang, W. et al. Land subsidence and rebound within the Taiyuan basin, northern China, within the context of inter-basin water switch and groundwater administration. Distant Sens. Environ. 269, 112792 (2022).

    Article 

    Google Scholar
     

  • Taylor, R. G. et al. Groundwater and local weather change. Nat. Clim. Change 3, 322–329 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Baig, M. B., Alotibi, Y., Straquadine, G. S. & Alataway, A. in Water Insurance policies in MENA Nations (ed. Zekri, S.) 135–160 (Springer, 2020).

  • Karimi, H. & Alimoradi, S. Impacts of water switch from Karkheh Dam on rising of groundwater in Dasht-e-Abass Plain, Ilam Province. Res. Earth Sci. 8, 33–44 (2017).


    Google Scholar
     

  • Winter, T. C., Harvey, J. W., Franke, O. L. & Alley, W. M. Floor water and floor water: a single useful resource. U.S. Geological Survey Round 1139. https://doi.org/10.3133/cir1139 (1998).

  • Li, M. G. et al. Results of groundwater exploitation and recharge on land subsidence and infrastructure settlement patterns in Shanghai. Eng. Geol. 282, 105995 (2021).

    Article 

    Google Scholar
     

  • Rotzoll, Okay. & Fletcher, C. H. Evaluation of groundwater inundation as a consequence of sea-level rise. Nat. Clim. Change 3, 477–481 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Qureshi, A. S., McCornick, P. G., Qadir, M. & Aslam, Z. Managing salinity and waterlogging within the Indus Basin of Pakistan. Agric. Water Manag. 95, 1–10 (2008).

    Article 

    Google Scholar
     

  • Foster, S. S. D. & Chilton, P. J. Groundwater: the processes and international significance of aquifer degradation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 1957–1972 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allison, G. B. et al. Land clearance and river salinisation within the western Murray Basin, Australia. J. Hydrol. 119, 1–20 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Favreau, G. et al. Land clearing, local weather variability, and water sources enhance in semiarid southwest Niger: a evaluate. Water Resour. Res. 45, W00A16 (2009).

    Article 

    Google Scholar
     

  • Wendt, D. E., Van Loon, A. F., Scanlon, B. R. & Hannah, D. M. Managed aquifer recharge as a drought mitigation technique in heavily-stressed aquifers. Environ. Res. Lett. 16, 014046 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Meals and Agriculture Group of the United Nations (FAO). Timber, forests and land use in drylands: the primary international evaluation. FAO Forestry Paper No. 184. https://www.fao.org/dryland-assessment/en/ (FAO, 2019).

  • Zomer, R. J., Trabucco, A., Bossio, D. A., van Straaten, O. & Verchot, L. V. Local weather change mitigation: a spatial evaluation of worldwide land suitability for clear improvement mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008).

    Article 

    Google Scholar
     

  • Buchhorn, M. et al. Copernicus International Land Service: Land Cowl 100m: assortment 3: epoch 2015: Globe (V3.0.1). Zenodo. https://doi.org/10.5281/zenodo.3939038 (2020).

  • Berghuijs, W. R., Luijendijk, E., Moeck, C., van der Velde, Y. & Allen, S. T. International recharge information set signifies strengthened groundwater connection to floor fluxes. Geophys. Res. Lett. 49, e2022GL099010 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Opie, S., Taylor, R. G., Brierley, C. M., Shamsudduha, M. & Cuthbert, M. O. Local weather–groundwater dynamics inferred from GRACE and the function of hydraulic reminiscence. Earth Syst. Dyn. 11, 775–791 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Konikow, L. F. & Leake, S. A. Depletion and seize: revisiting “the supply of water derived from wells”. Groundwater 52, 100–111 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Tapley, B. D. et al. Contributions of GRACE to understanding local weather change. Nat. Clim. Change 9, 358–369 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Rodell, M. & Li, B. Altering depth of hydroclimatic excessive occasions revealed by GRACE and GRACE-FO. Nat. Water 1, 241–248 (2023).

    Article 

    Google Scholar
     

  • Liu, P. W. et al. Groundwater depletion in California’s Central Valley accelerates throughout megadrought. Nat. Commun. 13, 7825 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scanlon, B. R. et al. International fashions underestimate giant decadal declining and rising water storage tendencies relative to GRACE satellite tv for pc information. Proc. Natl Acad. Sci. 115, E1080–E1089 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bierkens, M. F. & Wada, Y. Non-renewable groundwater use and groundwater depletion: a evaluate. Environ. Res. Lett. 14, 063002 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Li, B. et al. International GRACE information assimilation for groundwater and drought monitoring: advances and challenges. Water Resour. Res. 55, 7564–7586 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Xu, L. et al. From coarse decision to sensible answer: GRACE as a science communication and policymaking software for sustainable groundwater administration. J. Hydrol. 623, 129845 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jain, M. et al. Groundwater depletion will cut back cropping depth in India. Sci. Adv. 7, eabd2849 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbasnejad, A., Mirzaie, A., Derakhshani, R. & Esmaeilzadeh, E. Arsenic in groundwaters of the alluvial aquifer of Bardsir plain, SE Iran. Environ. Earth Sci. 69, 2549–2557 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Abiye, T. A. Groundwater want evaluation ORASECOM. Africa Groundwater Community (AGWNET) report (2012).

  • Abotalib, A. Z., Heggy, E., Scabbia, G. & Mazzoni, A. Groundwater dynamics in fossil fractured carbonate aquifers in Japanese Arabian Peninsula: a preliminary investigation. J. Hydrol. 571, 460–470 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Adams, G. P. & Bergman, D. L. Geohydrology of alluvium and terrace deposits of the Cimarron River from freedom to Guthrie, Oklahoma. U.S. Geological Survey Water-Sources Investigations Report 95-4066. https://pubs.usgs.gov/wri/1995/4066/report.pdf (1996).

  • Adelana, S., Xu, Y. & Vrbka, P. A. A conceptual mannequin for the event and administration of the Cape Flats aquifer, South Africa. Water SA 36, 461–474 (2010).

    Article 

    Google Scholar
     

  • Adinehvand, R., Mozaffarizadeh, J., Sajadi, Z. & Ansari, A. Figuring out main components affecting groundwater high quality of the Galehdar plain, south of Fars province. Res. Earth Sci. 10, 1–14 (2019).


    Google Scholar
     

  • Afshin, A. A. & Motlagh, Okay. S. The research of sharp decline in groundwater in Kohgiluyeh and Boyer province with particular consideration to the Calacho plain-Dehdasht-iran. Worldwide Journal of Analysis Publications. https://ijrp.org/paper-detail/67To (2018).

  • Agarwal, M., Gupta, S. Okay., Deshpande, R. D. & Yadava, M. G. Helium, radon and radiocarbon research on a regional aquifer system of the North Gujarat–Cambay area, India. Chem. Geol. 228, 209–232 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aghlmand, R. & Abbasi, A. Utility of MODFLOW with boundary circumstances analyses based mostly on restricted out there observations: a case research of Birjand plain in East Iran. Water 11, 1904 (2019).

    Article 

    Google Scholar
     

  • Ahmadi, A. & Aberoumand, M. Vulnerability of Khash-Plain aquifer, japanese Iran, to air pollution utilizing geographic info system (GIS). Geotech. Geol. 5, 1–11 (2009).


    Google Scholar
     

  • Ahmadvand, M. & Karami, E. A social affect evaluation of the floodwater spreading undertaking on the Gareh-Bygone plain in Iran: a causal comparative strategy. Environ. Impression Assess. Rev. 29, 126–136 (2009).

    Article 

    Google Scholar
     

  • Akhavan, S. et al. Utility of SWAT mannequin to research nitrate leaching in Hamadan–Bahar Watershed, Iran. Agric. Ecosyst. Environ. 139, 675–688 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Alatorre, L. C., Díaz, R. E., Miramontes, S., Bravo, L. C. & Sánchez, E. Spatial and temporal evolution of the static water degree of the Cuauhtemoc Aquifer through the years 1973, 1991 and 2000: a geographical strategy. J. Geogr. Inf. Syst. 6, 572–584 (2014).


    Google Scholar
     

  • Alberta Setting. Chilly Lake-Beaver River Basin. Groundwater high quality state of the basin report. https://open.alberta.ca/dataset/1566ed51-e765-468d-99d5-cfb9f08be4d5/useful resource/e1317376-a2d4-4f93-8834-b95963c3daf7/obtain/2006-coldlake-beavergroundwaterreport-2006.pdf (2006).

  • Aldaya, M. M. & Llamas, M. R. Water footprint evaluation for the Guadiana river basin (vol. 3). https://waterfootprint.org/media/downloads/Report35-WaterFootprint-Guadiana.pdf (2008).

  • Ali, R. et al. Potential local weather change impacts on groundwater sources of south-western Australia. J. Hydrol. 475, 456–472 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Alimoradi, J. et al. Information on corrosive water within the sources and distribution community of ingesting water in north of Iran. Information Temporary 17, 105–118 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alizadeh, M. R., Nikoo, M. R. & Rakhshandehroo, G. R. Hydro-environmental administration of groundwater sources: a fuzzy-based multi-objective compromise strategy. J. Hydrol. 551, 540–554 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Allander, Okay. Okay., Niswonger, R. G. & Jeton, A. E. Simulation of the Decrease Walker River Basin hydrologic system, west-central Nevada, utilizing PRMS and MODFLOW fashions. U.S. Geological Survey Scientific Investigations Report 2014-5190. https://pubs.usgs.gov/sir/2014/5190/pdf/sir2014-5190.pdf (2014).

  • Alvarado, J. A. C., Pačes, T. & Purtschert, R. Courting groundwater within the Bohemian Cretaceous Basin: understanding tracer variations within the subsurface. Appl. Geochem. 29, 189–198 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Amin, M., Khan, M. R. & Jamil, A. in Advances in Distant Sensing and Geo Informatics Functions. CAJG 2018. Advances in Science, Expertise & Innovation (eds El-Askary, H., Lee, S., Heggy, E. & Pradhan, B.) 299–304 (Springer, 2018).

  • Amiri, V., Rezaei, M. & Sohrabi, N. Groundwater high quality evaluation utilizing entropy weighted water high quality index (EWQI) in Lenjanat, Iran. Environ. Earth Sci. 72, 3479–3490 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Amirkhizi, M. T., Delirhasannia, R., Haghighatjou, P. & Majnooni Heris, A. Figuring out water high quality of agricultural wells to be used in pressurized irrigation methods of Sarab plain, Iran. Water Soil Sci. 29, 185–198 (2019).


    Google Scholar
     

  • Amouzegari, P., Panahi, M., Mirnia, S. Okay. & Daneshi, A. Estimation of preservation worth of groundwater sources from the villagers’ perspective in Alashtar Watershed, Iran. Watershed Eng. Manag. 12, 57–71 (2020).


    Google Scholar
     

  • Anand, A. V. S. S. Floor Water Brochure Nellore District, Andhra Pradesh. Central Floor Water Board, Ministry of Water Sources, Authorities of India. http://cgwb.gov.in/old_website/District_Profile/AP_districtProfiles.html (2009).

  • Anderholm, S. Okay. Hydrogeology of the Socorro and La Jencia Basins, Socorro County, New Mexico. U.S. Geological Survey Water-Sources Investigations Report 84-4342. https://pubs.usgs.gov/wri/1984/4342/report.pdf (1984).

  • Anders, R., Mendez, G. O., Futa, Okay. & Danskin, W. R. A geochemical strategy to find out sources and motion of saline groundwater in a coastal aquifer. Groundwater 52, 756–768 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Andreu, J. M., Alcalá, F. J., Vallejos, A. & Pulido-Bosch, A. Recharge to mountainous carbonated aquifers in SE Spain: totally different approaches and new challenges. J. Arid. Environ. 75, 1262–1270 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Anning, D. W. Conceptual understanding and groundwater high quality of chosen basin-fill aquifers within the Southwestern United States. Part 7.—Conceptual understanding and groundwater high quality of the basin-fill aquifer within the West Salt River Valley, Arizona. U.S. Geological Survey Skilled Paper 1781. https://pubs.usgs.gov/pp/1781/pdf/pp1781_section7.pdf (2014).

  • Ansari, M. A., Noble, J., Deodhar, A. & Kumar, U. S. Isotope hydrogeochemical fashions for assessing the hydrological processes in part of the biggest continental flood basalts province of India. Geosci. Entrance. 13, 101336 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Arabameri, A., Rezaei, Okay., Cerda, A., Lombardo, L. & Rodrigo-Comino, J. GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparability amongst statistical (bivariate and multivariate), information mining and MCDM approaches. Sci. Whole Environ. 658, 160–177 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Arabameri, A., Roy, J., Saha, S., Blaschke, T., Ghorbanzadeh, O. & Tien Bui, D. Utility of probabilistic and machine studying fashions for groundwater potentiality mapping in Damghan sedimentary plain, Iran. Distant Sens. 11, 3015 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Araneda, M., Avendaño, M. S. & Del Río, G. D. Modelo estructural de la cuenca de Santiago, Chile y su relación con la hidrogeología. Rev. Geofís. 62, 29–48 (2010).


    Google Scholar
     

  • Arasteh, S. M. & Shoaei, S. M. An evaluation of the results of extreme groundwater abstraction on the standard of groundwater sources of the Zanjan Plain, Iran. Environ. Earth Sci. 79, 523 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Arauzo, M. & Martínez-Bastida, J. J. Environmental components affecting diffuse nitrate air pollution within the main aquifers of central Spain: groundwater vulnerability vs. groundwater air pollution. Environ. Earth Sci. 73, 8271–8286 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aref, F. & Roosta, R. Evaluation of groundwater high quality and hydrochemical traits in Farashband plain, Iran. Arab. J. Geosci. 9, 752 (2016).

    Article 

    Google Scholar
     

  • Argamasilla Ruiz, M. & Andreo-Navarro, B. Resultados preliminares de la investigación hidrogeológica del acuífero aluvial del río Guadaiza (Marbella, España). https://riuma.uma.es/xmlui/deal with/10630/8767 (2015).

  • Arizona Division of Water Sources. The Groundwater Circulate Mannequin of the Willcox Basin. Arizona Division of Water Sources report. https://www.azwater.gov/websites/default/recordsdata/2022-12/Willcox_Report_2018.pdf (2018).

  • Armengol, S., Manzano, M., Ayora, C. & Martínez, S. The origin of groundwater salinity within the Matanza-Riachuelo aquifer system, Argentina. Groundw. Maintain. Dev. 20, 100879 (2023).

    Article 

    Google Scholar
     

  • Arrate, I. et al. Groundwater air pollution in Quaternary aquifer of Vitoria–Gasteiz (Basque Nation, Spain). Affect of agricultural actions and water-resource administration. Environ. Geol. 30, 257–265 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Arreguín, F., López-Pérez, M. & Galván, R. Acuíferos transfronterizos en México: análisis normativo hacia una estrategia de manejo. Tecnol. Cienc. Agua 9, 1–38 (2018).

    Article 

    Google Scholar
     

  • Arthur, J. Okay. & Taylor, R. E. Floor-water circulate evaluation of the Mississippi embayment aquifer system, South-Central United States. U.S. Geological Survey Skilled Paper 1416-1. https://pubs.usgs.gov/pp/1416i/report.pdf (1998).

  • Aryafar, A., Khosravi, V. & Hooshfar, F. GIS-based comparative characterization of groundwater high quality of Tabas basin utilizing multivariate statistical methods and computational intelligence. Int. J. Environ. Sci. Technol. 16, 6277–6290 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Aryafar, A., Khosravi, V., Zarepourfard, H. & Rooki, R. Evolving genetic programming and different AI-based fashions for estimating groundwater high quality parameters of the Khezri plain, Japanese Iran. Environ. Earth Sci. 78, 69 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Asadi, F., Soltanian, M., Mohmmadi, A., Setareh, P. & Khezri, S. M. Geographical zoning physicochemical high quality change in groundwater catchment Gharehsou ten-year interval 2003-2012. Biosci. Biotechnol. Res. Asia 12, 507–515 (2015).

    Article 

    Google Scholar
     

  • Asadi, N., Kaki, M. & Jamoor, R. Groundwater degree decline and compensating withdrawal plan in Aleshtar plain, Lorestan province, Iran. J. Nat. Environ. Hazards 5, 107–124 (2016).


    Google Scholar
     

  • Asgharinia, S. & Petroselli, A. A comparability of statistical strategies for evaluating lacking information of monitoring wells within the Kazeroun Plain, Fars Province, Iran. Groundw. Maintain. Dev. 10, 100294 (2020).

    Article 

    Google Scholar
     

  • Ashraf, A. & Ahmad, Z. Regional groundwater circulate modelling of Higher Chaj Doab of Indus Basin, Pakistan utilizing finite factor mannequin (Feflow) and geoinformatics. Geophys. J. Int. 173, 17–24 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Ashraf, A., Ahmad, Z. & Akhter, G. in Groundwater of South Asia (ed. Mukherjee, A.) 593–611 (Springer, 2018).

  • Ashworth, J. B. Bone Spring-Victorio Peak aquifer of the Dell Valley area of Texas. Texas Water Improvement Board report. https://www.twdb.texas.gov/publications/experiences/numbered_reports/doc/R356/Chapter10.pdf (2001).

  • Aucott, W. R. Hydrology of the Southeastern Coastal Plain aquifer system in South Carolina and components of Georgia and North Carolina. U.S. Geological Survey Skilled Paper 1410-E. https://pubs.usgs.gov/pp/1410e/report.pdf (1996).

  • Australian Authorities. Sydney Basin bioregion evaluation. https://www.bioregionalassessments.gov.au/assessments/sydney-basin-bioregion (2018).

  • Avand, M. & Ekhtesasi, M. R. The impact of geological formations on the standard and amount of groundwater (case research: Imamzadeh Jafar Gachsaran plain). Maintain. Earth Rev. 1, 1–6 (2020).


    Google Scholar
     

  • Awadh, S. M., Al-Mimar, H. & Yaseen, Z. M. Groundwater availability and water demand sustainability over the higher mega aquifers of Arabian Peninsula and west area of Iraq. Environ. Dev. Maintain. 23, 1–21 (2020).

    Article 

    Google Scholar
     

  • Azizi, F., Moghaddam, A. A., Nazemi, A. & Gorgij, A. D. Introducing a novel technique in analysis of groundwater hydrochemical traits, GWQISI index: case research—Malekan Aquifer, Northwest of Iran. Arab. J. Geosci. 12, 343 (2019).

    Article 

    Google Scholar
     

  • Azma, A. et al. Statistical modeling for spatial groundwater potential map based mostly on GIS approach. Sustainability 13, 3788 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Babaee, S. et al. Land subsidence from interferometric SAR and groundwater patterns within the Qazvin plain, Iran. Int. J. Distant Sens. 41, 4780–4798 (2020).

    Article 

    Google Scholar
     

  • Bachand, P. A. M., Birt, Okay. S. & Bachand, S. M. Groundwater relationships to pumping, precipitation and geology in high-elevation basin, Sierra Valley, CA. Report back to Feather River Land. https://aquadocs.org/deal with/1834/41185 (2020).

  • Bachman, L. J., Shedlock, R. J. & Phillips, P. J. Floor-water-quality evaluation of the Delmarva Peninsula, Delaware, Maryland, and Virginia. U.S. Geological Survey Open-File Report 87-112. https://pubs.usgs.gov/of/1987/0112/report.pdf (1987).

  • Bachman, S. Goleta groundwater basin groundwater administration plan. Goleta Water District. https://www.goletawater.com/doc/1194/ (2010).

  • Again, W. Geology and ground-water options of the Smith River Plain Del Norte County California. U.S. Geological Survey Water-Provide Paper 1254. https://pubs.usgs.gov/wsp/1254/report.pdf (1957).

  • Again, W. et al. Course of and price of dedolomitization: mass switch and 14C courting in a regional carbonate aquifer. Geol. Soc. Am. Bull. 94, 1415–1429 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Baghapour, M. A. et al. Optimization of DRASTIC technique by synthetic neural community, nitrate vulnerability index, and composite DRASTIC fashions to evaluate groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran. J. Environ. Well being Sci. Eng. 14, 13 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bagheri, R., Bagheri, F. & Eggenkamp, H. G. M. Origin of groundwater salinity within the Fasa Plain, southern Iran, hydrogeochemical and isotopic approaches. Environ. Earth Sci. 76, 662 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Bagheri, R., Nosrati, A., Jafari, H., Eggenkamp, H. G. M. & Mozafari, M. Overexploitation hazards and salinization dangers in essential declining aquifers, chemo-isotopic approaches. J. Hazard. Mater. 369, 150–163 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bahrami, M., Khaksar, E. & Khaksar, E. Spatial variation evaluation of groundwater high quality utilizing multivariate statistical evaluation (case research: Fasa Plain, Iran). J. Groundw. Sci. Eng. 8, 230–243 (2020).

    CAS 

    Google Scholar
     

  • Bai, L. et al. Well being threat evaluation analysis on heavy metals ingestion via groundwater ingesting pathway for the residents in Baotou, China. J. Environ. Well being 78, 84–91 (2016).

    PubMed 

    Google Scholar
     

  • Bal, A. A. Valley fills and coastal cliffs buried beneath an alluvial plain: proof from variation of permeabilities in gravel aquifers, Canterbury Plains, New Zealand. J. Hydrol. (New Zeal.) 35, 1–27 (1996).


    Google Scholar
     

  • Balachandran, A. District groundwater brochure Tirunelveli district, Tamil Nadu. Central Floor Water Board Technical Report Collection. http://cgwb.gov.in/old_website/District_Profile/TN_districtprofile.html (2009).

  • Ballukraya, P. N. & Kalimuthu, R. Quantitative hydrogeological and geomorphological analyses for groundwater potential evaluation in laborious rock terrains. Curr. Sci. 98, 253–259 (2010).


    Google Scholar
     

  • Banejad, H., Mohebzadeh, H., Ghobadi, M. H. & Heydari, M. Numerical simulation of groundwater circulate and contamination transport in Nahavand Plain aquifer, west of Iran. J. Geol. Soc. India 83, 83–92 (2014).

    Article 

    Google Scholar
     

  • Barati, Okay., Koopaei, J. A., Azari, A., Darvishi, E. & Yousefi, A. Floor water modeling to find out hydrodynamics coefficients in unconfined aquifer (case research: Kermanshah Plain). Iran. J. Soil Water Res. 50, 687–700 (2019).


    Google Scholar
     

  • Barker, R. A. & Ardis, A. F. Hydrogeological framework of the Edwards-Trinity aquifer system, west-central Texas. U.S. Geological Survey Skilled Paper 1421-B. https://pubs.usgs.gov/pp/1421b/report.pdf (1996).

  • Barkmann, P. E. et al. ON-010 Colorado Groundwater Atlas. Geohydrology. Colorado Geological Survey. https://coloradogeologicalsurvey.org/water/colorado-groundwater-atlas/ (2020).

  • Barnett, S., Harrington, N., Cook dinner, P. & Simmons, C. T. in Sustainable Groundwater Administration. International Points in Water Coverage, Vol. 24 (eds Rinaudo, J.-D., Hollet, C., Barnett, S. & Montginoul, M.) 109–127 (Springer, 2020).

  • Barnett, S. et al. A hydrostratigraphic mannequin for the shallow aquifer methods of the Gambier Basin and South Western Murray Basin. Goyder Institute for Water Analysis Technical Report Collection No. 15/15. https://goyderinstitute.org/report/a-hydrostratigraphic-model-for-the-shallow-aquifer-systems-of-the-gambier-basin-and-south-western-murray-basin/ (2015).

  • Barnett, S., Simmons, C. T. & Nelson, R. in International Groundwater: Supply, Shortage, Sustainability, Safety, and Options (eds Mukherjee, A., Scanlon, B. R., Aureli, A., Langan, S., Guo, H. & McKenzie, A.) 35–46 (Elsevier, 2021).

  • Barron, O. et al. Local weather change results on water-dependent ecosystems in south-western Australia. J. Hydrol. 434, 95–109 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Bartolino, J. R. & Cole, J. C. Floor-water sources of the Center Rio Grande Basin. U.S. Geological Survey Water-Sources Round 1222. https://pubs.usgs.gov/circ/2002/circ1222/pdf/circ1222.pdf (2002).

  • Barzegar, R., Moghaddam, A. A. & Tziritis, E. Hydrogeochemical options of groundwater sources in Tabriz plain, northwest of Iran. Appl. Water Sci. 7, 3997–4011 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Basharat, M. Groundwater Setting and Analysis of Lengthy-Time period Sustainability of the Aquifer below Lahore, Punjab, Pakistan. Worldwide Waterlogging and Salinity Analysis Institute, Pakistan Water and Energy Improvement Authority report. Mission title: “Enhancing the groundwater administration capability in Asian cities via the event and software of groundwater sustainability index (GSII) within the context of worldwide change” (2014).

  • Baudron, P. et al. Impacts of human actions on recharge in a multilayered semiarid aquifer (Campo de Cartagena, SE Spain). Hydrol. Course of. 28, 2223–2236 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Bauer-Gottwein, P. et al. The Yucatán Peninsula karst aquifer, Mexico. Hydrol. J. 19, 507–524 (2011).

    ADS 

    Google Scholar
     

  • Bayat-Varkeshi, M., Farahani, M. & Ghabaei Sough, M. Impact of meteorological drought on groundwater useful resource (case research: Komijan Aquifer in Markazi Province). Iran Water Resour. Res. 14, 114–124 (2018).


    Google Scholar
     

  • Bazrafshan, O., Parandin, F. & Farokhzadeh, B. Evaluation of hydro-meteorological drought results on groundwater sources in Hormozgan region-South of Iran. Ecopersia 4, 1569–1584 (2016).

    Article 

    Google Scholar
     

  • Seaside, J. A. et al. Groundwater availability mannequin for the Igneous and components of the West Texas Bolsons (Wild Horse Flat, Michigan Flat, Ryan Flat and Lobo Flat) aquifers. Texas Water Improvement Board report. https://www.twdb.texas.gov/groundwater/fashions/gam/igbl/IGBL_Model_Report.pdf (2004).

  • Seaside, J. A., Burton, S. & Kolarik, B. Groundwater availability mannequin for the Lipan Aquifer in Texas. Texas Water Improvement Board report. https://www.twdb.texas.gov/groundwater/fashions/gam/lipn/LIPN_Model_Report.pdf (2004).

  • Beaudoin, N., Gasparrini, M., David, M. E., Lacombe, O. & Koehn, D. Bedding-parallel stylolites as a software to unravel most burial depth in sedimentary basins: software to Center Jurassic carbonate reservoirs within the Paris basin, France. GSA Bull. 131, 1239–1254 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Beccaletto, L., Hanot, F., Serrano, O. & Marc, S. Overview of the subsurface structural sample of the Paris Basin (France): insights from the reprocessing and interpretation of regional seismic traces. Mar. Pet. Geol. 28, 861–879 (2011).

    Article 

    Google Scholar
     

  • Becker, C. J., Runkle, D. & Rea, A. Digital information units that describe aquifer traits of the Enid remoted terrace aquifer in northwestern Oklahoma. U.S. Geological Survey Open-File Report 96-450. https://pubs.usgs.gov/of/1996/ofr96-450/ (1997).

  • Becker, C. J., Runkle, D. & Rea, A. Digital information units that describe aquifer traits of the Elk Metropolis aquifer in western Oklahoma. U.S. Geological Survey Open-File Report 96-449. https://pubs.usgs.gov/of/1996/ofr96-449/ (1997).

  • Becker, M. F. & Runkle, D. L. Hydrogeology, water high quality, and geochemistry of the Rush Springs aquifer, western Oklahoma. U.S. Geological Survey Water-Sources Investigations Report 98-4081. https://pubs.usgs.gov/wri/1998/4081/report.pdf (1998).

  • Bejarano, M. D. et al. Responses of riparian guilds to circulate alterations in a Mediterranean stream. J. Veg. Sci. 23, 443–458 (2012).

    Article 

    Google Scholar
     

  • Bekesi, G., McGuire, M. & Moiler, D. Groundwater allocation utilizing a groundwater degree response administration technique—Gnangara groundwater system, Western Australia. Water Resour. Manag. 23, 1665–1683 (2009).

    Article 

    Google Scholar
     

  • Bengtson, S., Sallstedt, T., Belivanova, V. & Whitehouse, M. Three-dimensional preservation of mobile and subcellular buildings suggests 1.6 billion-year-old crown-group pink algae. PLoS Biol. 15, e2000735 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berens, V., Alcoe, D. & Watt, E. Non-prescribed groundwater sources evaluation — Eyre Peninsula pure sources administration area. Technical Report DFW 2011/16. Science, Monitoring and Data Division, Division for Water. https://www.waterconnect.sa.gov.au/Content material/Publications/DEW/EP_NRM_Non-prescribed_GW_Assessment_2011.pdf (2011).

  • Berger, D. L. Hydrogeology and water sources of Ruby Valley, northeastern Nevada. U.S. Geological Survey Scientific Investigations Report 2005-5247. https://pubs.usgs.gov/sir/2005/5247/sir2005-5247.pdf (2006).

  • Berger, D. L., Ross, W. C., Thodal, C. E. & Robledo, A. R. Hydrogeology and simulated results of city improvement on water sources of Spanish Springs Valley, Washoe County, West-Central Nevada. U.S. Geological Survey Water-Sources Investigations Report 96-4297. https://pubs.usgs.gov/wri/1996/4297/report.pdf (1997).

  • Bernhard, C. et al. Nitrate air pollution of groundwater within the Alsatian Plain (France)—a multidisciplinary research of an agricultural space: the Central Ried of the In poor health river. Environ. Geol. Water Sci. 20, 125–137 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bestland, E. et al. Groundwater dependent swimming pools in seasonal and everlasting streams within the Clare Valley of South Australia. J. Hydrol. Reg. Stud. 9, 216–235 (2017).

    Article 

    Google Scholar
     

  • Betcher, R. N. Groundwater Availability Map Collection – Dauphin Lake Space (62-O). Manitoba Division of Pure Sources map. https://www.gov.mb.ca/water/pubs/maps/water/1987_betcher_groundwater_availability_map_series_dauphin_lake.zip (1986).

  • Betcher, R. N. Groundwater Availability Map Collection – Neepawa Space (62-J). Manitoba Division of Pure Sources map. https://www.gov.mb.ca/water/pubs/maps/water/1988_betcher_groundwater_availability_map_series_neepawa.zip (1988).

  • Betcher, R. N. Groundwater Availability Map Collection – Selkirk Space (62-I). Manitoba Division of Pure Sources map. https://www.gov.mb.ca/water/pubs/maps/water/1986_betcher_groundwater_availability_map_series_selkirk.zip (1985).

  • Betcher, R. N. Groundwater Availability Map Collection – Virden Space (62-F). Manitoba Division of Pure Sources map. https://www.gov.mb.ca/water/pubs/maps/water/1983_betcher_groundwater_availability_map_series_virden.zip (1983).

  • Betcher, R. N., Pupp, C. & Grove, G. Groundwater in Manitoba: hydrogeology, high quality considerations, administration. Setting Canada, Nationwide Hydrology Analysis Institute Report No. C2-93017. https://net.viu.ca/earle/geol304/hg-manitoba.pdf (1995).

  • Beverly, C. et al. The Gippsland groundwater mannequin. Technical report. Victoria State Authorities. https://www.parliament.vic.gov.au/pictures/tales/committees/EPC/Other_documents/G3_-_Gippsland_groundwater_model_report_June_2015_2.pdf (2015).

  • Bexfield, L. M. & Anderholm, S. Okay. Predevelopment water-level map of the Santa Fe Group aquifer system within the center Rio Grande basin between Cochiti Lake and San Acacia, New Mexico. U.S. Geological Survey Water-Sources Investigations Report 2000-4249. https://doi.org/10.3133/wri004249 (2000).

  • Bhimani, S. A. Research on Groundwater Salinization and Formulation of Administration Methods for the Coastal Aquifers of Mundra Area, Kutch District, Gujarat State. PhD thesis, Maharaja Sayajirao College of Baroda (2013).

  • Bhuiyan, C., Singh, R. P. & Flügel, W. A. Modelling of floor water recharge-potential within the hard-rock Aravalli terrain, India: a GIS strategy. Environ. Earth Sci. 59, 929–938 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Bhunia, G. S., Keshavarzi, A., Shit, P. Okay., Omran, E. S. E. & Bagherzadeh, A. Analysis of groundwater high quality and its suitability for ingesting and irrigation utilizing GIS and geostatistics methods in semiarid area of Neyshabur, Iran. Appl. Water Sci. 8, 168 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Bianco, E. Seismic interpretation of the Windsor-Kennetcook basin. Geological Survey of Canada Open File 7452. https://ftp.maps.canada.ca/pub/nrcan_rncan/publications/STPublications_PublicationsST/292/292763/of_7452.pdf (Geological Survey of Canada, 2013).

  • Biteau, J. J., Le Marrec, A., Le Vot, M. & Masset, J. M. The aquitaine basin. Pet. Geosci. 12, 247–273 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bjorklund, L. J. & McGreevy, L. J. Floor-water sources of Cache Valley, Utah and Idaho. Utah Division of Pure Sources, Division of Water Rights Technical Publication No. 36. https://waterrights.utah.gov/docSys/v920/w920/w920008y.pdf (1971).

  • Bjorklund, L. J. Reconnaissance of floor water circumstances within the Crow Flats space, Otero County, New Mexico. New Mexico State Engineer Workplace Technical Report No. 8. http://www.oteroswcd.org/PDF/NMpercent20OSEpercent20Reconnaissancepercent20ofpercent20Groundpercent20Waterpercent20Conditionspercent20inpercent20thepercent20Crowpercent20Flatspercent20Areapercent201957.pdf (1957).

  • Blake, S. et al. Compositional multivariate statistical evaluation of thermal groundwater provenance: a hydrogeochemical case research from Eire. Appl. Geochem. 75, 171–188 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bocanegra, E., Da Silva, G. C., Custodio, E., Manzano, M. & Montenegro, S. State of data of coastal aquifer administration in South America. Hydrol. J. 18, 261–267 (2010).

    ADS 

    Google Scholar
     

  • Bonsor, H. C. et al. Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia. Hydrol. J. 25, 1377–1406 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Boonkaewwan, S., Sonthiphand, P. & Chotpantarat, S. Mechanisms of arsenic contamination related to hydrochemical traits in coastal alluvial aquifers utilizing multivariate statistical approach and hydrogeochemical modeling: a case research in Rayong province, japanese Thailand. Environ. Geochem. Well being 43, 537–566 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bordbar, M., Neshat, A. & Javadi, S. A brand new hybrid framework for optimization and modification of groundwater vulnerability in coastal aquifer. Environ. Sci. Pollut. Res. 26, 21808–21827 (2019).

    Article 

    Google Scholar
     

  • Borneuf, D. M. Hydrogeological map of the Oyen space, Alberta, NTS 72M. Alberta Power Regulator map. https://static.ags.aer.ca/recordsdata/doc/MAP/Map_120.pdf (2005).

  • Boroghani, M., Taie, M. & Mirnia, S. Okay. Evaluation of relationship between hydrogeological and climatological droughts utilizing SWI and SPI indices in Sabzevar Plain. Iran. J. Rangeland Desert Res. 20, 733–744 (2013).


    Google Scholar
     

  • Boswell, E. H. The Citronelle aquifers in Mississippi. U.S. Geological Survey Water-Sources Investigations Report 78-131. https://pubs.usgs.gov/wri/1978/0131/plate-1.pdf (1979).

  • Bouchaou, L. et al. Utility of a number of isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water within the Souss–Massa aquifer, southwest of Morocco. J. Hydrol. 352, 267–287 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Bradley, E. Abstract of the ground-water sources of the Laramie River drainage basin, Wyoming, and the North Platte River drainage basin from Douglas, Wyoming, to the Wyoming-Nebraska state line. U.S. Geological Survey Open-File Report 55-17. https://pubs.usgs.gov/of/1955/0017/report.pdf (1955).

  • Brahana, J. V. & Bradley, M. W. Preliminary delineation and outline of the regional aquifers of Tennessee–the Highland Rim Aquifer System. U.S. Geological Survey Water-Sources Investigations Report 82-4054. https://pubs.usgs.gov/wri/wri824054/pdf/wrir_82-4054_a.pdf (1986).

  • Brahana, J. V., Macy, J. A., Mulderink, D. & Zemo, D. Preliminary delineation and outline of the regional aquifers of Tennessee–Cumberland plateau aquifer system. U.S. Geological Survey Water-Sources Investigations Open-File Report 82-338. https://pubs.usgs.gov/wri/wrir82-338/pdf/wrir_82-338_a.pdf (1986).

  • Braun, C. L., Ramage, J. Okay. & Shah, S. D. Standing of groundwater-level altitudes and long-term groundwater-level adjustments within the Chicot, Evangeline, and Jasper aquifers, Houston-Galveston area, Texas, 2019. U.S. Geological Survey Scientific Investigations Report 2019-5089. https://pubs.usgs.gov/sir/2019/5089/sir20195089.pdf (2019).

  • Bredehoeft, J. D., Neuzil, C. E. & Milly, P. C. D. Regional circulate within the Dakota aquifer: a research of the function of confining layers. U.S. Geological Survey Water-Provide Paper 2237. https://pubs.er.usgs.gov/publication/wsp2237 (1983).

  • Bredehoeft, J. D. & Farvolden, R. N. Disposition of aquifers in intermontane basins of northern Nevada. Worldwide Affiliation of Scientific Hydrology, Fee of Subterranean Waters, Publication no. 64, 197–212. https://iahs.data/uploads/dms/064017.pdf (1963).

  • Bresciani, E. et al. Utilizing hydraulic head, chloride and electrical conductivity information to differentiate between mountain-front and mountain-block recharge to basin aquifers. Hydrol. Earth Syst. Sci. 22, 1629–1648 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • BRGM. L’aquifère des calcaires carbonifères. Presentation for an Interreg IVB NWE undertaking for a greater high quality of floor and groundwater our bodies within the Scheldt Worldwide River Basin District (IRBD). https://www.isc-cie.org/wp-content/uploads/PLEN_1701_pres-Parmentier_BRGM_Carbonifere.pdf (2013).

  • Briar, D. W. & Dutton, D. M. Hydrogeology and aquifer sensitivity of the Bitterroot Valley, Ravalli County, Montana. U.S. Geological Survey Water-Sources Investigations Report 99-4219. https://pubs.usgs.gov/wri/1999/4219/report.pdf (1999).

  • Briar, D. W. & Madison, J. P. Hydrogeology of the Helena Valley-fill aquifer system, west-central Montana. U.S. Geological Survey Water-Sources Investigations Report 92-4023. https://pubs.usgs.gov/wri/1992/4023/report.pdf (1992).

  • Briceño Aguirre, A. D. Funcionamiento Hidrogeológico y Geometría del Acuífero del Sector Norte y Centro de Santiago. Thesis, Universidad de Chile (2020).

  • Shiny, D. J., Stamos, C. L., Martin, P. M. & Nash, D. B. Floor-water hydrology and high quality within the Lompoc space, Santa Barbara County, California, 1987-88. U.S. Geological Survey Water-Sources Investigations Report 91-4172. https://pubs.usgs.gov/wri/1991/4172/report.pdf (1992).

  • Brito-Castillo, L., Méndez Rodríguez, L. C., Chávez López, S. & Acosta Vargas, B. Groundwater differentiation of the aquifer within the Vizcaino Biosphere Reserve, Baja California Peninsula, Mexico. Geofís. Int. 49, 167–179 (2010).

    CAS 

    Google Scholar
     

  • Brockman, C. S. Physiographic areas of Ohio. State of Ohio, Division of Pure Sources, Division of Geological Survey map. https://www.epa.gov/websites/default/recordsdata/2016-04/paperwork/05_oh_rec4.pdf (1998).

  • Brooks, H. Okay. Physiographic divisions of Florida. Report for the Florida Cooperative Extension Service, Institute of Meals and Agricultural Sciences, College of Florida (1981).

  • Brooks, L. E. & Mason, J. L. Hydrology and simulation of ground-water circulate in Cedar Valley, Iron County, Utah. U.S. Geological Survey Scientific Investigations Report 2005-5170. https://pubs.usgs.gov/sir/2005/5170/PDF/SIR2005_5170.pdf (2005).

  • Brooks, L. E. Analysis of the groundwater circulate mannequin for southern Utah and Goshen Valleys, Utah, up to date to circumstances via 2011, with new projections and groundwater administration simulations. U.S. Geological Survey Open-File Report 2013-1171. https://pubs.usgs.gov/of/2013/1171/pdf/ofr2013-1171.pdf (2013).

  • Brown, C. R. & Macy, J. P. Groundwater, surface-water, and water-chemistry information from the C-aquifer Monitoring Program, northeastern Arizona, 2005–2011. U.S. Geological Survey Open-File Report 2012-1196. https://pubs.usgs.gov/of/2012/1196/of2012-1196.pdf (2012).

  • Brown, D. M., Lloyd, J. W. & Jacobson, G. Hydrogeological mannequin for Amadeus Basin aquifers, central Australia. Aust. J. Earth Sci. 37, 215–226 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Bruun, B., Jackson, Okay., Lake, P. & Walker, J. Texas aquifers research. Groundwater amount, high quality, circulate, and contributions to floor water. Texas Water Improvement Board report. https://www.twdb.texas.gov/groundwater/docs/research/TexasAquifersStudy_2016.pdf#web page=89 (2016).

  • Bugan, R. D. et al. 4 many years of water recycling in Atlantis (Western Cape, South Africa): previous, current and future. Water SA 42, 577–594 (2016).

    Article 

    Google Scholar
     

  • Bujes Moreno, N. J. I. Estudio de la propiedad del agua subterránea del acuίfero del Rίo Petorca en la Región de Valparaίso, Chile. Thesis, Universidad de Chile (2015).

  • Buono, A. The Southern Hills regional aquifer system of southeastern Louisiana and southwestern Mississippi. U.S. Geological Survey Water-Sources Investigations Report 83-4189. https://pubs.usgs.gov/wri/1983/4189/report.pdf (1983).

  • Burbey, T. J. Hydrogeology and potential for ground-water improvement, carbonate-rock aquifers in southern Nevada and southeastern California. U.S. Geological Survey Water-Sources Investigations Report 95-4168. https://pubs.usgs.gov/wri/1995/4168/report.pdf (1997).

  • Burgess, W. G. et al. Vulnerability of deep groundwater within the Bengal Aquifer System to contamination by arsenic. Nat. Geosci. 3, 83–87 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Burns, E. R., Morgan, D. S., Peavler, R. S. & Kahle, S. C. Three-dimensional mannequin of the geologic framework for the Columbia Plateau regional aquifer system, Idaho, Oregon, and Washington. U.S. Geological Survey Scientific Investigations Report 2010-5246. https://pubs.usgs.gov/sir/2010/5246/pdf/sir20105246.pdf (2011).

  • Burns, E. R., Snyder, D. T., Haynes, J. V. & Waibel, M. S. Groundwater standing and tendencies for the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho. U.S. Geological Survey Scientific Investigations Report 2012-5261. https://pubs.usgs.gov/sir/2012/5261/pdf/sir2012-5261.pdf (2012).

  • Cai, Y., Esaki, T., Liu, S. & Mitani, Y. Impact of substitute water tasks on tempo-spatial distribution of groundwater withdrawals in Chikugo-Saga plain, Japan. Water Resour. Manag. 28, 4645–4663 (2014).

    Article 

    Google Scholar
     

  • Calatrava, J., Guillem, A. & Martínez-Granados, D. Evaluation of options to eradicate aquifer overdraft within the Guadalentín Valley, SE Spain. Econ. Agrar. Recur. Nat. 11, 33–62 (2011).


    Google Scholar
     

  • Calf, G. E., McDonald, P. S. & Jacobson, G. Recharge mechanism and groundwater age within the Ti‐Tree Basin, Northern Territory. Aust. J. Earth Sci. 38, 299–306 (1991).

    Article 
    ADS 

    Google Scholar
     

  • California Division of Water Sources. Basin Boundaries Description – Imperial Valley. Bulletin 118. https://water.ca.gov/-/media/DWR-Web site/Net-Pages/Packages/Groundwater-Administration/Bulletin-118/Recordsdata/2003-Basin-Descriptions/7_030_ImperialValley.pdf (2003).

  • California Division of Water Sources. Borrego Valley – Ocotillo Wells Basin Boundaries. https://water.ca.gov/-/media/DWR-Web site/Net-Pages/Packages/Groundwater-Administration/Bulletin-118/Recordsdata/2016-Basin-Boundary-Descriptions/7_024_02_OcotilloWells.pdf (2016).

  • California Division of Water Sources. California’s groundwater replace 2013 – Chapter 10: North Lahontan Hydrologic Area. https://water.ca.gov/-/media/DWR-Web site/Net-Pages/Packages/Groundwater-Administration/Bulletin-118/Recordsdata/Statewide-Experiences/GWU2013_Ch10_NorthLahontan_Final.pdf (2015).

  • California Division of Water Sources. California’s groundwater replace 2013 – Chapter 11: South Lahontan Hydrologic Area. https://water.ca.gov/-/media/DWR-Web site/Net-Pages/Packages/Groundwater-Administration/Information-and-Instruments/Recordsdata/Statewide-Experiences/California-Groundwater-Replace-2013/California-Groundwater-Replace-2013—Chapter-11—South-Lahontan.pdf (2015).

  • California Division of Water Sources. California’s groundwater replace 2013 – Chapter 12: Colorado River Hydrologic Area. https://water.ca.gov/-/media/DWR-Web site/Net-Pages/Packages/Groundwater-Administration/Bulletin-118/Recordsdata/Statewide-Experiences/GWU2013_Ch12_ColoradoRiver_Final.pdf (2015).

  • California Division of Water Sources. California’s groundwater replace 2013 – Chapter 3: North Coast Hydrologic Area. https://water.ca.gov/-/media/DWR-Web site/Net-Pages/Packages/Groundwater-Administration/Bulletin-118/Recordsdata/Statewide-Experiences/GWU2013_Ch3_NorthCoast_Final.pdf (2015).

  • California Division of Water Sources. California’s groundwater replace 2013 – Chapter 4: San Francisco Bay Hydrologic Area. https://cawaterlibrary.web/wp-content/uploads/2017/05/GWU2013_Ch4_SanFranciscoBay_Final.pdf (2015).

  • California Division of Water Sources. California’s groundwater replace 2013 – Chapter 5: Central Coast Hydrologic Area. https://cawaterlibrary.web/wp-content/uploads/2017/05/GWU2013_Ch5_CentralCoast_Final.pdf (2015).

  • California Division of Water Sources. California’s groundwater replace 2013 – Chapter 6: South Coast Hydrologic Area. https://cawaterlibrary.web/wp-content/uploads/2017/05/GWU2013_Ch6_SouthCoast_Final.pdf (2015).

  • California Division of Water Sources. California’s groundwater replace 2013 – Chapter 7: Sacramento River Hydrologic Area. https://water.ca.gov/-/media/DWR-Web site/Net-Pages/Packages/Groundwater-Administration/Bulletin-118/Recordsdata/Statewide-Experiences/GWU2013_Ch7_SacramentoRiver_Final.pdf (2015).

  • California Division of Water Sources. California’s groundwater replace 2013 – Chapter 8: San Joaquin River Hydrologic Area. https://water.ca.gov/-/media/DWR-Web site/Net-Pages/Packages/Groundwater-Administration/Information-and-Instruments/Recordsdata/Statewide-Experiences/California-Groundwater-Replace-2013/California-Groundwater-Replace-2013—Chapter-8—San-Joaquin-River.pdf (2015).

  • California Division of Water Sources. California’s groundwater replace 2013 – Chapter 9: Tulare Lake Hydrologic Area. https://information.cnra.ca.gov/dataset/california-water-plan-groundwater-update-2013/useful resource/8a4ae915-b786-42e1-9abe-99a8fcc23349 (2015).

  • Callegary, J. B. et al. San Pedro River Aquifer Binational Report: Worldwide Boundary and Water Fee. https://pubs.usgs.gov/publication/70191935 (2016).

  • Camacho, E. A. S. Estimación del volumen promedio recibido por el humedal de la subcuenca del Río Blanco (bajo Papaloapan; Veracruz), a través del cálculo de un steadiness de aguas. Aqua-LAC 2, 78–87 (2010).

    Article 

    Google Scholar
     

  • Campbell, E. E., Parker-Nance, T. & Bate, G. C. A compilation of data on the magnitude, nature and significance of coastal aquifers in Southern Africa. Water Analysis Fee Report No. 370/1/92. http://www.wrc.org.za/wp-content/uploads/mdocs/370-1-92.pdf (1992).

  • Campos, C. et al. Soil water retention and carbon swimming pools in tropical forested wetlands and marshes of the Gulf of Mexico. Hydrol. Sci. J. 56, 1388–1406 (2011).

    Article 

    Google Scholar
     

  • Campos, M. N. et al. Sectorization of environmental threat and human consumption of manganese in groundwater extracted from the Sinaloa River Aquifer. WIT Trans. Ecol. Environ. 171, 247–257 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Campos, M. N., Muñoz-Sevilla, P. & Le Bail, M. in Advances in Environmental Monitoring and Evaluation (ed. Sarvajayakesavalu, S.) Ch. 1, 3–19 (IntechOpen, 2019).

  • Camuñas Palencia, C., Mejías Moreno, M., Hornero Díaz, J. E., Ruíz Bermudo, F. & García Menéndez, O. Deep aquifers as strategic groundwater reservoir in Spain. Bol. Geol. Min. 133, 7–26 (2022).


    Google Scholar
     

  • Cañez Araiza, D. A. Caracterización hidrogeoquímica y situación precise de la intrusión marina en la porción costera del acuífero Caborca, Sonora, México. MSc thesis, Universidad de Sonora (2018).

  • Cantwell, C. A. & Fawler, A. P. G. in Proc. Thirty-Ninth Workshop on Geothermal Reservoir Engineering. SGP-TR-202. https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2014/Cantwell.pdf (2014).

  • Cao, S. et al. Figuring out the origin and destiny of nitrate within the Nanyang Basin, Central China, utilizing environmental isotopes and the Bayesian mixing mannequin. Environ. Sci. Pollut. Res. 28, 48343–48361 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Carceller-Layel, T., Costa-Alandí, C., Coloma-López, P., García-Vera, M. Á. & San Román-Saldaña, J. Groundwater within the central sector of the Ebro Basin. Water Resour. Dev. 23, 165–187 (2007).

    Article 

    Google Scholar
     

  • Cardona, A., Carrillo-Rivera, J. J., Huizar-Alvarez, R. & Graniel-Castro, E. Salinization in coastal aquifers of arid zones: an instance from Santo Domingo, Baja California Sur, Mexico. Environ. Geol. 45, 350–366 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Cardoso, P. R. Saline water intrusion in Mexico. WIT Trans. Ecol. Environ. 2, 37–43 (1993).


    Google Scholar
     

  • Cardwell, G. T. Geology and floor water within the Santa Rosa and Petaluma Valley areas, Sonoma County, California. U.S. Geological Survey Water-Provide Paper 1427. https://pubs.usgs.gov/wsp/1427/report.pdf (1958).

  • Carroll, R. W. et al. Mason Valley groundwater mannequin: linking floor water and groundwater within the Walker River Basin, Nevada. J. Am. Water Resour. Assoc. 46, 554–573 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Carroll, R. W. H., Pohll, G. & Rajagopal, S. South Lake Tahoe groundwater mannequin. Desert Analysis Institute report. https://www.stpud.us/Partpercent20Ipercent20Report_revised_Feb_25_2016.pdf (2016).

  • Carruth, R. L., Kahler, L. M. & Conway, B. D. Groundwater-storage change and land-surface elevation change in Tucson Basin and Avra Valley, south-central Arizona—2003–2016. U.S. Geological Survey Scientific Investigations Report 2018-5154. https://pubs.usgs.gov/sir/2018/5154/sir20185154.pdf (2018).

  • Cartwright, I. et al. Constraining groundwater circulate, residence occasions, inter-aquifer mixing, and aquifer properties utilizing environmental isotopes within the southeast Murray Basin, Australia. Appl. Geochem. 27, 1698–1709 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Casado, M. The Tagus basin: groundwater and transboundary Aquifers. Presentation on the Workshop on Transboundary Water Sources Administration in Western and Central Europe. https://www.researchgate.web/publication/341251820_The_Tagus_basin_Groundwater_and_Transboundary_Aquifers (2010).

  • Central Floor Water Board. Aquifer mapping and floor water administration Chennai Aquifer System. Central Floor Water Board report. http://cgwb.gov.in/cgwbpnm/public/uploads/paperwork/1699436014992103716file.pdf (2017).

  • Central Floor Water Board. Aquifer methods of Chhattisgarh. Central Floor Water Board report. http://cgwb.gov.in/old_website/AQM/Chhattisgarh.pdf (2012).

  • Central Floor Water Board. Aquifer methods of India. Central Floor Water Board report. http://cgwb.gov.in/cgwbpnm/public/uploads/paperwork/1687419512680023437file.pdf (2012).

  • Central Floor Water Board. Aquifer methods of Karnataka. Central Floor Water Board report. http://cgwb.gov.in/old_website/AQM/Karnataka.pdf (2012).

  • Central Floor Water Board. Aquifer methods of Kerala. Central Floor Water Board report. http://cgwb.gov.in/old_website/AQM/Kerala.pdf (2012).

  • Central Floor Water Board. Aquifer methods of Madhya Pradesh. Central Floor Water Board report. http://cgwb.gov.in/old_website/AQM/Madhyapercent20Pradesh.pdf (2013).

  • Central Floor Water Board. Aquifer methods of Tamilnadu and Puducherry. Central Floor Water Board report. http://cgwb.gov.in/cgwbpnm/publication-detail/670 (2012).

  • Central Floor Water Board. Floor water info booklet Dharwad District, Karnataka. Central Floor Water Board report. http://cgwb.gov.in/old_website/District_Profile/Karnataka_districtprofile.html (2008).

  • Central Floor Water Board. Floor water info booklet Haveri District, Karnataka. Central Floor Water Board report. http://cgwb.gov.in/old_website/District_Profile/Karnataka_districtprofile.html (2008).

  • Central Floor Water Board. Floor water info booklet, Bhadrak District, Orissa. Central Floor Water Board report. http://cgwb.gov.in/old_website/District_Profile/Orissa/BHADRAKpercent20.pdf (2013).

  • Central Floor Water Board. Floor water info Jaipur District, Rajasthan. Central Floor Water Board report. http://cgwb.gov.in/old_website/District_Profile/Rajasthan/Jaipur.pdf (2013).

  • Central Floor Water Board. Pilot Mission Report on Aquifer mapping in Decrease Vellar watershed, Cuddalore District, Tamilnadu. Central Floor Water Board report. http://cgwb.gov.in/cgwbpnm/publication-detail/311 (2015).

  • Cerón, J. C. & Pulido-Bosch, A. Groundwater issues ensuing from CO2 air pollution and overexploitation in Alto Guadalentín aquifer (Murcia, Spain). Environ. Geol. 28, 223–228 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Chalapathi Rao, N. V., Gibson, S. A., Pyle, D. M. & Dickin, A. P. Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah Basin and Dharwar craton, southern India. J. Petrol. 45, 907–948 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Chamanehpour, E., Sayadi, M. H. & Yousefi, E. The potential analysis of groundwater air pollution based mostly on the intrinsic and the particular vulnerability index. Groundw. Maintain. Dev. 10, 100313 (2020).

    Article 

    Google Scholar
     

  • Chang, J. & Wang, G. Main ions chemistry of groundwater within the arid area of Zhangye Basin, northwestern China. Environ. Earth Sci. 61, 539–547 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chapman, J. B., Thomas, J. M. & Garner, C. Groundwater recharge timing based mostly on 14C and 2H inside Indian Wells Valley, California, USA. Appl. Geochem. 141, 105268 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chastain-Howley, A., Dean, Okay. E. & Spear, A. A. Groundwater Availability Mannequin for the Seymour Aquifer. Texas Water Improvement Board report. https://www.twdb.texas.gov/groundwater/fashions/gam/symr/symr.asp (2004).

  • Chatterjee, S., Biswal, B. P., Sinha, U. Okay. & Patbhaje, S. D. Isotope-geochemical evaluation of thermal waters and their affect on surrounding potable water sources within the Tapi valley geothermal space, Maharashtra, India. Environ. Earth Sci. 80, 424 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, C. T., Hu, J. C., Lu, C. Y., Lee, J. C. & Chan, Y. C. Thirty-year land elevation change from subsidence to uplift following the termination of groundwater pumping and its geological implications within the Metropolitan Taipei Basin, Northern Taiwan. Eng. Geol. 95, 30–47 (2007).

    Article 

    Google Scholar
     

  • Chen, W. F. & Liu, T. Okay. Dissolved oxygen and nitrate of groundwater in Choshui Fan-Delta, western Taiwan. Environ. Geol. 44, 731–737 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Z., Wei, W., Liu, J., Wang, Y. & Chen, J. Figuring out the recharge sources and age of groundwater within the Songnen Plain (Northeast China) utilizing environmental isotopes. Hydrol. J. 19, 163–176 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Cheraghi, S. A. M., Nagafi, B., Shajari, S. & Javan, M. The pattern of adjustments in groundwater amount and high quality within the Sarvestan Plain of Fars Province. Watershed Manag. Res. J. 33, 82–96 (2020).


    Google Scholar
     

  • Cherry, A. J. A Multi-tracer Estimation of Groundwater Recharge in a Glaciofluvial Aquifer in Southeastern Manitoba. MSc thesis, Univ. Ottawa (2000).

  • Chica-Olmo, M., Luque-Espinar, J. A., Rodriguez-Galiano, V., Pardo-Igúzquiza, E. & Chica-Rivas, L. Categorical Indicator Kriging for assessing the danger of groundwater nitrate air pollution: the case of Vega de Granada aquifer (SE Spain). Sci. Whole Environ. 470, 229–239 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Choubin, B. & Malekian, A. Relationship between fluctuations within the water desk and aquifer salinization (case research: Aquifer Aspas-Fars Province). Desert Manag. 1, 13–26 (2013).


    Google Scholar
     

  • Chowdari, S. et al. Structural mapping based mostly on potential area and distant sensing information, South Rewa Gondwana Basin, India. J. Earth Syst. Sci. 126, 1–27 (2017).

    Article 

    Google Scholar
     

  • Christenson, S. et al. Hydrogeology and simulation of groundwater circulate within the Arbuckle-Simpson aquifer, south-central Oklahoma. U.S. Geological Survey Scientific Investigations Report 2011-5029. https://pubs.usgs.gov/sir/2011/5029/SIR2011-5029.pdf (2011).

  • Chucuya, S. et al. Hydrogeochemical characterization and identification of things influencing groundwater high quality in coastal aquifers, case: La Yarada, Tacna, Peru. Int. J. Environ. Res. Public Well being 19, 2815 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cigna, F. & Tapete, D. Satellite tv for pc InSAR survey of structurally-controlled land subsidence because of groundwater exploitation within the Aguascalientes Valley, Mexico. Distant Sens. Environ. 254, 112254 (2021).

    Article 

    Google Scholar
     

  • Metropolis of Chilliwack. Groundwater Safety. https://www.chilliwack.com/major/web page.cfm?id=205 (2021).

  • Clark, B. R., Duncan, L. L. & Knierim, Okay. J. Groundwater availability within the Ozark Plateaus aquifer system. U.S. Geological Survey Skilled Paper 1854. https://pubs.er.usgs.gov/publication/pp1854 (2019).

  • Clark, W. Z. & Zisa, A. C. Physiographic map of Georgia. Georgia Division of Pure Sources. https://epd.georgia.gov/doc/publication/sm-4-physiographic-map-georgia-12000000-1988/obtain (1976).

  • Clauzon, G. et al. Genèse et évolution du piémont néogène subalpin du bas Dauphiné. Université d’Aix-Marseille II. https://hal-insu.archives-ouvertes.fr/file/index/docid/459143/filename/Clauzon1990.pdf (1990).

  • Coes, A., Gellenbeck, D. J., Towne, D. C. & Freark, M. C. Floor water high quality within the Higher Santa Cruz Basin. U.S. Geological Survey Water-Sources Investigations Report 00-4117. https://pubs.usgs.gov/wri/2000/4117/report.pdf (2002).

  • Fee locale de l’eau Basse Vallee de l’Ain. Plan d’Aménagement et de Gestion Sturdy de la ressource en eau et des milieux aquatiques (PAGD). https://www.gesteau.fr/websites/default/recordsdata/2-sage_pagd-adopte.pdf (2013).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en al acuifero Rio Fuerte (2501), estado de Sinaloa. Comisión Nacional del Agua report. https://www.gob.mx/cms/uploads/attachment/file/103330/DR_2501.pdf (2015).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Abrego (3215), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3215.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Bajo Rio Bravo (2801), estado de Tamaulipas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/tamaulipas/DR_2801.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Cedros (3218), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3218.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero El Salvador (3219), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3219.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Flores Magon-Villa Ahumada (0821), estado de Chihuahua. https://www.gob.mx/cms/uploads/attachment/file/103582/DR_0821.pdf (2015).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Guadalupe Garzarón (3212), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3220.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Hidalgo (3202), estado de Zacatecas. https://www.gob.mx/cms/uploads/attachment/file/104507/DR_3202.pdf (2015).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Huatulco (2011), estado de Oaxaca. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/oaxaca/DR_2011.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero La Blanca (3228), estado de Zacatecas. https://www.gob.mx/cms/uploads/attachment/file/104536/DR_3228.pdf (2015).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Lampazos Villaldama (1901), estado de Nuevo León. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/nleon/DR_1901.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Libres-Oriental (2102), estado de Puebla. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/puebla/DR_2102.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Loreta (3229), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3229.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Méndez San Fernando (2802), estado de Tamaulipas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/tamaulipas/DR_2802.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Navidad-Potosí-Raíces (1916), estado de Nuevo León. https://www.gob.mx/cms/uploads/attachment/file/103175/DR_1916.pdf (2015).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Ojocaliente (3212), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3212.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Perote-Zalayeta (3004), estado de Veracruz. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/veracruz/DR_3004.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Pino Suárez (3233), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3233.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Poza Rica (3001), estado de Veracruz. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/veracruz/DR_3001.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Puerto Madero (3224), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3224.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Río Cañas (2513), estado de Sinaloa. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/sinaloa/DR_2513.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Río Presidio (2509), estado de Sinaloa. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/sinaloa/DR_2509.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Río Sinaloa (2502), estado de Sinaloa. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/sinaloa/DR_2502.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Sabinas (3201), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3201.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Sain Alto (3216), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3216.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Sabinas-Parás (1902), estado de Nuevo León. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/nleon/DR_1902.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero San Felipe-Punta Estrella (0222), estado de Baja California. https://www.gob.mx/cms/uploads/attachment/file/103420/DR_0222.pdf (2015).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero San José de Guaymas (2636), estado de Sonora. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/sonora/DR_2636.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Valle de Canatlán (1002), estado de Durango. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/durango/DR_1002.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Valle de Escuinapa (2511), estado de Sinaloa. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/sinaloa/DR_2511.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Vanegas-Catorce (2401), estado de San Luis Potosi. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/sanluispotosi/DR_2401.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Vicente Guerrero-Poanas (1004), estado de Durango. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/durango/DR_1004.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Villa de Arriaga (2406), estado de San Luis Potosi. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/sanluispotosi/DR_2406.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Villa García (3213), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3213.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuifero Orizaba-Córdoba (3007), estado de Veracruz. https://www.gob.mx/cms/uploads/attachment/file/104452/DR_3007.pdf (2015).

  • CONAGUA. Acuíferos (nacional). https://sinav30.conagua.gob.mx:8080/SINA/?opcion=acuiferos (2021).

  • CONAGUA. Aguas subterráneas/Acuíferos. https://sigagis.conagua.gob.mx/aprovechamientos/ (2021).

  • Connecticut Division of Power & Environmental Safety. Overview of the Floor Water Circulate System in Connecticut. https://portal.ct.gov/DEEP/Aquifer-Safety-and-Groundwater/Floor-Water/Floor-Water-Circulate-System-in-Connecticut (2021).

  • Contoux, C., Violette, S., Vivona, R., Goblet, P. & Patriarche, D. How basin mannequin outcomes allow the research of multi-layer aquifer response to pumping: the Paris Basin, France. Hydrol. J. 21, 545–557 (2013).

    ADS 

    Google Scholar
     

  • Cook dinner, P. G., Jolly, I. D., Leaney, F. W. J. Groundwater recharge within the Mallee area, and salinity implications for the Murray River: a evaluate. CSIRO Land and Water report. https://publications.csiro.au/publications/publication/PIprocite:ef08494d-43a2-4dae-bda4-3d72a62e673f/SQpercent22Groundwaterpercent20rechargepercent20inpercent20thepercent20Malleepercent20Regionpercent2Cpercent20andpercent20salinitypercent22/RP1/RS25/RORECENT/STsearch-by-keyword/LISEA/RI1/RT1 (2001).

  • Courtois, N. et al. Giant‐scale mapping of laborious‐rock aquifer properties utilized to Burkina Faso. Groundwater 48, 269–283 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Cox, S. E. & Kahle, S. C. Hydrogeology, ground-water high quality, and sources of nitrate in lowland glacial aquifers of Whatcom County, Washington, and British Columbia, Canada. U.S. Geological Survey Water-Sources Investigations Report 98-4195. https://pubs.er.usgs.gov/publication/wri984195 (1999).

  • Craig, T. W. Floor Water of the Uncompahgre Valley Montrose County, Colorado. MSc thesis, Univ. Missouri-Rolla (1971).

  • Cresswell, R. G., Jacobson, G., Wischusen, J. & Fifield, L. Okay. Historic groundwaters within the Amadeus Basin, Central Australia: proof from the radio-isotope 36Cl. J. Hydrol. 223, 212–220 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cresswell, R. & Gibson, D. Utility of Airborne Geophysical Methods to Groundwater Useful resource Points within the Angas-Bremer Plains, South Australia. South Australia Salinity Mapping and Administration Assist Mission Report No. DWLBC 2004/35, Land and Biodiversity Companies Division, Division of Water, Land and Biodiversity Conservation. http://angasbremerwater.org.au/paperwork/abplains_summary.pdf (2004).

  • Crosbie, R. S. & Rachakonda, P. Okay. Constraining probabilistic chloride mass-balance recharge estimates utilizing baseflow and remotely sensed evapotranspiration: the Cambrian Limestone Aquifer in northern Australia. Hydrol. J. 29, 1399–1419 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Crow, R. S. et al. The Colorado River and its deposits downstream from Grand Canyon in Arizona, California, and Nevada. U.S. Geological Survey Open-File Report 2018-1005. https://pubs.usgs.gov/of/2018/1005/ofr20181005.pdf (2018).

  • Crowley, J. J., LaFave, J. I., Bergantino, R. N., Carstarphen, C. A. & Patton, T. W. Precept Aquifers of Montana. Montana Bureau of Mines and Geology Hydrogeologic Map 11. https://www.leg.mt.gov/content material/Committees/Interim/2017-2018/Water-Coverage/Conferences/Jan-2018/Reveals/Jan9/Exhibit5.pdf (2017).

  • Currell, M., Banfield, D., Cartwright, I. & Cendón, D. I. Geochemical indicators of the origins and evolution of methane in groundwater: Gippsland Basin, Australia. Environ. Sci. Pollut. Res. 24, 13168–13183 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Currell, M., Cendón, D. I. & Cheng, X. Evaluation of environmental isotopes in groundwater to know the response of a susceptible coastal aquifer to pumping: Western Port Basin, south-eastern Australia. Hydrol. J. 21, 1413–1427 (2013).

    ADS 

    Google Scholar
     

  • Currie, D. et al. Investigating the affect of local weather change on groundwater sources: Aquifer characterisation. Report back to the Nationwide Water Fee. https://publications.csiro.au/rpr/obtain?pid=csiro:EP202082&dsid=DS3 (2010).

  • Custodio, E. et al. Groundwater intensive use and mining in south-eastern peninsular Spain: hydrogeological, financial and social facets. Sci. Whole Environ. 559, 302–316 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cutshall, I. City settlement in Hokkaido. Econ. Geogr. 25, 17–22 (1949).

    Article 

    Google Scholar
     

  • Dadgar, M. A., Zeaieanfirouzabadi, P., Dashti, M. & Porhemmat, R. Extracting of potential groundwater potential zones utilizing distant sensing information, GIS, and a probabilistic strategy in Bojnourd basin, NE of Iran. Arab. J. Geosci. 10, 114 (2017).

    Article 

    Google Scholar
     

  • Dalmau, A. B., Gimena, E. C. & Vierbücher, C. L. Las aguas subterráneas en el delta del ebro. Revista de Obras Públicas, 3.36847. https://rac.es/ficheros/doc/00538.pdf (1997).

  • Danis, C. Use of groundwater temperature information in geothermal exploration: the instance of Sydney Basin, Australia. Hydrol. J. 22, 87–106 (2014).


    Google Scholar
     

  • Dar, F. A. et al. Karstification within the Cuddapah Sedimentary Basin, southern India: implications for groundwater sources. Acta Carsologica 40, 457–472 (2011).


    Google Scholar
     

  • Das, P. P. Saline contamination Mahanadi deltaic aquifers: a evaluate. Proc. Indian Natl Sci. Acad. 86, 1169–1176 (2020).

    Article 

    Google Scholar
     

  • Das, S. & Prakash, I. in Proc. sixth Worldwide Convention on Case Histories in Geotechnical Engineering. https://core.ac.uk/obtain/pdf/229070665.pdf (2008).

  • Daskin, W. R. Preliminary analysis of the hydrogeologic system in Owens Valley, California. U.S. Geological Survey Water-Sources Investigations Report 88-4003. https://pubs.usgs.gov/wri/1988/4003/report.pdf (1988).

  • Davidson, B. Kentucky Interagency Groundwater Monitoring Community: Annual Report July 2017–June 2018. http://www.uky.edu/KGS/water/gnet/itac17-18.pdf (2018).

  • Davidson, W. A. & Yu, X. Perth area aquifer modelling system — PRAMS, hydrogeology and groundwater modelling. Western Australia Division of Water Hydrogeological Report Collection HG20. https://www.wa.gov.au/system/recordsdata/2022-04/Perth-Area-Aquifer-Modelling-System-%28PRAMSpercent29-hydrogeology-and-groundwater-modelling.pdf (2006).

  • Davies, H. & Hanley, P. T. State of the Watershed Report – 2010. Water Safety Company, Saskatchewan. Appendix A. https://www.wsask.ca/wp-content/uploads/2021/02/a_2010StateoftheWatershedReport.pdf (2010).

  • Davies-Smith, A., Bolke, E. L. & Collins, C. A. Geohydrology and digital simulation of the ground-water circulate system within the Umatilla Plateau and Horse Heaven Hills space, Oregon and Washington. U.S. Geological Survey Water-Sources Investigations Report 87-4268. https://pubs.usgs.gov/wri/1987/4268/report.pdf (1988).

  • Davis, H. Hydrogeologic investigation and simulation of ground-water circulate within the Higher Floridan aquifer of North-Central Florida and Southwestern Georgia and delineation of contributing areas for chosen metropolis of Tallahassee, Florida, water-supply wells. U.S. Geological Survey Water-Sources Investigations Report 95-4296. https://fl.water.usgs.gov/PDF_files/wri95_4296_davis.pdf (1996).

  • Day, J. C. Worldwide aquifer administration: the Hueco Bolson on the Rio Grande River. Nat. Resour. J. 18, 163–180 (1978).


    Google Scholar
     

  • de Caritat, P. et al. Groundwater geochemistry, hydrogeology and potash mineral potential of the Lake Woods area, Northern Territory, Australia. Aust. J. Earth Sci. 66, 411–430 (2019).

    Article 

    Google Scholar
     

  • de la Losa, A., Moreno, L. & Nunez, E. L. Calidad química de las aguas subterráneas en una zona de actividad minera (Cuenca del Bierzo- León). Bol. Geol. Min. 121, 103–122 (2010).


    Google Scholar
     

  • de Lourdes Corral-Bermudez, M., Sánchez-Ortiz, E., Álvarez-Bernal, D., Gutiérrez-Montenegro, M. O. & Cassio-Madrazo, E. Eventualities of availability of water because of overexploitation of the aquifer within the basin of Laguna de Santiaguillo, Durango, Mexico. PeerJ 7, e6814 (2019).

    Article 

    Google Scholar
     

  • Melo, M. C.De, Paquete, P. C. & Silva, M. M.Da Evolution of the Aveiro Cretaceous aquifer (NW Portugal) through the Late Pleistocene and current day: proof from chemical and isotopic information. Geol. Soc. Lond. Spec. Publ. 189, 139–154 (2001).

    Article 

    Google Scholar
     

  • de Montety, V. et al. Origin of groundwater salinity and hydrogeochemical processes in a confined coastal aquifer: case of the Rhône delta (Southern France). Appl. Geochem. 23, 2337–2349 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Souza, E. L.de et al. Síntese da hidrogeologia nas bacias sedimentares do Amazonas e do Solimões: Sistemas Aquíferos Içá-Solimões e Alter do Chão. Geol. USP Série Científica 13, 107–117 (2013).

    Article 

    Google Scholar
     

  • Deeds, N. E. et al. Remaining conceptual mannequin report for the Excessive Plains Aquifer System groundwater availability mannequin. Texas Water Improvement Board report. https://www.twdb.texas.gov/groundwater/fashions/gam/hpas/HPAS_GAM_Conceptual_Report.pdf (2015).

  • Deolankar, S. B. The Deccan basalts of Maharashtra, India—their potential as aquifers. Groundwater 18, 434–437 (1980).

    Article 

    Google Scholar
     

  • Division of Setting and Water of the Authorities of South Australia. Decrease Limestone Coast PWA Unconfined Aquifer. 2017 groundwater degree and salinity standing report. https://www.waterconnect.sa.gov.au/Content material/Publications/DEW/Lower_Limestone_Coast_PWA_Unconfined_GSR_2017.pdf (2017).

  • Division of Setting, Water and Pure Sources of the Authorities of South Australia. Booborowie Valley. Groundwater degree and salinity standing report. https://www.waterconnect.sa.gov.au/Content material/Publications/DEW/Booborowie_Valley_Status_Report_2011.pdf (2011).

  • Division of Science, IT, Innovation and the Arts. Mulgrave River basin hydrology – improvement of groundwater circulate mannequin for the Mulgrave River basin. Report ready for the Division of Pure Sources and Mines for the Moist Tropics Draft Water Useful resource Plan. https://nla.gov.au/nla.obj-2742766628/view (2013).

  • Division of Water Affairs and Forestry, South Africa. Vaal River system: giant bulk water provide reconciliation technique: groundwater evaluation: dolomite aquifers. DWAF Report Quantity: P RSA C000/00/4406/06. https://www.dws.gov.za/iwrp/Vaal/paperwork/LargeBulkWater/06_Dolomiticpercent20Groundwaterpercent20Assessment_Final.pdf (2006).

  • Division of Water and Sanitation. Groundwater standing report – Western Cape Area. Division of Water and Sanitation map. https://www.dws.gov.za/Groundwater/GroundwaterOffices/WC/Annualpercent20report_percent20groundwaterpercent20statuspercent20A0percent20-%20201503.pdf (2015).

  • Deshpande, R. D. Groundwater in and Round Cambay Basin, Gujarat: Some Geochemical and Isotopic Investigations. PhD thesis, Bodily Analysis Laboratory (2006).

  • Dever, L., Travi, Y., Barbecot, F., Marlin, C. & Gibert, E. Proof for palaeowaters within the coastal aquifers of France. Geol. Soc. Lond. Spec. Publ. 189, 93–106 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dhar, A. et al. Hydro-environmental evaluation of a regional floor water aquifer: Hirakud command space (India). Environ. Earth Sci. 73, 4165–4178 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dhinagaran, V. District Groundwater Brochure Thanjavur District, Tamil Nadu. Central Floor Water Board, Ministry of Water Sources report. http://cgwb.gov.in/old_website/District_Profile/TN_districtprofile.html (2009).

  • Díaz González, T. E. & Penas, Á. in The Vegetation of the Iberian Peninsula Vol. 12 (ed. Loidi, J.) 251–321 (Springer, 2017).

  • Direccion Normal de Aguas. Analisis de disponibilidad de recursos hidricos subterraneous en el sector hidrogeologico de aprovechamiento comun Huasco Desembocadura, Cuencas Rio Huasco. Report No. 14593214. https://dga.mop.gob.cl/Decretos_Escacez/0303-2.pdf (2021).

  • Direccion Normal de Aguas. Diagnóstico y Clasificación de Sectores Acuíferos, Volumen No. 2. Gobierno de Chile Ministerio de Obras Publicas report. https://snia.mop.gob.cl/unhappy/CQA5168v2.pdf (2009).

  • Direccion Normal de Aguas. Inventario Nacional de acuiferos. Ministerio De Obras Públicas (Gobierno De Chile) report quantity 403. https://snia.mop.gob.cl/unhappy/SUB5748.pdf (2017).

  • Direccion Normal de Aguas. Plan Nacional de Estudios Acuíferos. Report quantity 381. https://bibliotecadigital.ciren.cl/bitstream/deal with/20.500.13082/32415/DGA_2015_actualizacion_plan_nacional_acuiferos.pdf?sequence=1&isAllowed=y (2015).

  • Divine, D. & Sibray, S. S. An outline of secondary aquifers in Nebraska. Conservation and Survey Division, Instructional Round No. 26. https://core.ac.uk/obtain/pdf/127441451.pdf (2017).

  • D’Lugosz, J. J. & McClaflin, R. G. Geohydrology of the Vamoosa-Ada aquifer east-central Oklahoma with a piece on chemical high quality of water. U.S. Geological Survey Round 87. http://www.ogs.ou.edu/pubsscanned/Circulars/circular87mm.pdf (1986).

  • Dong, L., Guo, Y., Tang, W., Xu, W. & Fan, Z. Statistical analysis of the influences of precipitation and river degree fluctuations on groundwater in Yoshino River Basin, Japan. Water 14, 625 (2022).

    Article 

    Google Scholar
     

  • Donoso, G., Lictevout, E. & Rinaudo, J.-D. in Sustainable Groundwater Administration. (eds Rinaudo, J. D., Holley, C., Barnett, S. & Montginoul, M.) 481–509 (Springer, 2020).

  • Dörfler, M. Evaluation of Aquifer-induced Soil Actions of Heterogeneous Subsoil in City Areas Based mostly on Groundwater, Borehole and InSAR Information, a Case Research of Salzburg. Masters thesis, Paris-Lodron-Univ. Salzburg (2021).

  • Douglas, A. A., Osiensky, J. L. & Keller, C. Okay. Carbon-14 courting of floor water within the Palouse Basin of the Columbia River basalts. J. Hydrol. 334, 502–512 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Downey, J. S. Geohydrology of the Madison and related aquifers in components of Montana, North Dakota, South Dakota, and Wyoming. U.S. Geological Survey Skilled Paper 1273-G. https://pubs.usgs.gov/pp/1273g/report.pdf (1982).

  • Doyle, W. W. Floor water within the Arica Space, Chile. Article quantity 170. Brief Papers in Geology and Hydrology Articles 122–172. U.S. Geological Survey Skilled Paper 475-D, D213–D215 (1964).

  • Driscoll, D. G., Carter, J. M., Williamson, J. E. & Putnam, L. D. Hydrology of the Black Hills space, South Dakota. U.S. Geological Survey Water-Sources Investigations Report 2002-4094. https://pubs.usgs.gov/wri/wri024094/pdf/wri024094.pdf (2002).

  • Duell Jr, L. F. W. Geohydrology of the Antelope Valley space, California, and design for a ground-water-quality monitoring community. U.S. Geological Survey Water-Sources Investigations Report 84-4081. https://pubs.usgs.gov/wri/1984/4081/report.pdf (1987).

  • Dumont, A., Salmoral, G. & Llamas, M. R. The water footprint of a river basin with a particular concentrate on groundwater: the case of Guadalquivir basin (Spain). Water Resour. Ind. 1, 60–76 (2013).

    Article 

    Google Scholar
     

  • Dunlop, G., Palanichamy, J., Kokkat, A., James, E. J. & Palani, S. Simulation of saltwater intrusion into coastal aquifer of Nagapattinam within the decrease cauvery basin utilizing SEAWAT. Groundw. Maintain. Dev. 8, 294–301 (2019).

    Article 

    Google Scholar
     

  • Duque, C., Calvache, M. L. & Engesgaard, P. Investigating river–aquifer relations utilizing water temperature in an anthropized surroundings (Motril-Salobreña aquifer). J. Hydrol. 381, 121–133 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Duraiswami, R. A., Das, S. & Shaikh, T. Hydrogeological framework of aquifers from the Deccan Traps, India: some insights. Mem. Geol. Soc. India, 1–15 (2012).

  • Dustin, J. D. Hydrogeology of Utah Lake with Emphasis on Goshen Bay. PhD dissertation, Brigham Younger Univ. (1978).

  • Dutta, P. Okay. et al. Resolving Kamthi-related issues in Gondwana stratigraphy of peninsular India. Indian J. Geosci. 69, 85–102 (2015).


    Google Scholar
     

  • Ebadati, N. & Sepavandi, S. Function of geological buildings and lithology within the quantitative and qualitative adjustments of Eshtehard aquifers. Iran. J. Ecohydrol. 2, 117–128 (2015).


    Google Scholar
     

  • Ebrahim, G. Y., Villholth, Okay. G. & Boulos, M. Built-in hydrogeological modelling of hard-rock semi-arid terrain: supporting sustainable agricultural groundwater use in Hout catchment, Limpopo Province, South Africa. Hydrol. J. 27, 965–981 (2019).

    ADS 

    Google Scholar
     

  • Ebrahimi Varzane, S., Zarei, H., TishehZan, P. & Akhondali, A. M. Analysis of groundwater-surface water interplay by utilizing cluster evaluation (case research: western a part of Dezful-Andimeshk plain). Iran Water Resour. Res. 15, 246–257 (2019).


    Google Scholar
     

  • Ebrahimi, M., Kazemi, H., Ehtashemi, M. & Rockaway, T. D. Evaluation of groundwater amount and high quality and saltwater intrusion within the Damghan basin, Iran. Geochemistry 76, 227–241 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Echogdali, F. Z. et al. Characterization and productiveness of alluvial aquifers in sustainability oasis areas: a case research of the Tata watershed (southeast Morocco). Appl. Sci. 13, 5473 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Edalat, A., Khodaparast, M. & Rajabi, A. M. Eventualities to regulate land subsidence utilizing numerical modeling of groundwater exploitation: Aliabad plain (in Iran) as a case research. Environ. Earth Sci. 79, 1–12 (2020).

    Article 

    Google Scholar
     

  • Ehya, F. & Saeedi, F. Evaluation of groundwater high quality within the Garmez space (Southeastern Khuzestan province, SW Iran) for ingesting and irrigation makes use of. Carbonates Evaporites 34, 1443–1454 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Eimers, J. L., Daniel III, C. C. & Coble, R. W. Hydrogeology and simulation of ground-water circulate at U.S. Marine Corps Air Station, Cherry Level, North Carolina, 1987-90. U.S. Geological Survey Water-Sources Investigations Report 94-4186. https://pubs.usgs.gov/wri/1994/4186/report.pdf (1994).

  • El Mahdad, E. et al. in The Souss‐Massa River Basin, Morocco (eds Choukr-Allah, R., Ragab, R., Bouchaou, L. & Barceló, D.) 303–333 (Springer, 2017).

  • Ellis, J. H. et al. Hydrogeology and simulation of groundwater circulate and evaluation of projected water use for the Canadian River alluvial aquifer, western and central Oklahoma. U.S. Geological Survey Scientific Investigations Report 2016-5180. https://pubs.usgs.gov/sir/2016/5180/sir20165180.pdf (2017).

  • Emami, S., Hemmati, M. & Arvanaghi, H. Efficiency analysis of Imperialist Aggressive and Genetic algorithm for estimating groundwater high quality parameters (case research: Bostanabad plain). Hydrogeology 2, 44–53 (2018).


    Google Scholar
     

  • Erostate, M. et al. Delayed nitrate dispersion inside a coastal aquifer supplies constraints on land-use evolution and nitrate contamination up to now. Sci. Whole Environ. 644, 928–940 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eslamizadeh, A. & Samanirad, S. Land subsidence and fissuring because of floor water withdrawal in Yazd-Ardakan basin, central Iran. World Acad. Sci. Eng. Technol. 48, 489–492 (2010).


    Google Scholar
     

  • Esmaeili-Vardanjani, M., Rasa, I., Yazdi, M. & Pazand, Okay. The hydrochemical evaluation of groundwater sources within the Kadkan basin, Northeast of Iran. Carbonates Evaporites 31, 129–138 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Esteban, E. & Albiac, J. The issue of sustainable groundwater administration: the case of La Mancha aquifers, Spain. Hydrol. J. 20, 851–863 (2012).

    ADS 

    Google Scholar
     

  • Esteve, P., Varela-Ortega, C., Blanco-Gutiérrez, I. & Downing, T. E. A hydro-economic mannequin for the evaluation of local weather change impacts and adaptation in irrigated agriculture. Ecol. Econ. 120, 49–58 (2015).

    Article 

    Google Scholar
     

  • Evans, S. Baroota Groundwater Useful resource – Monitoring Overview and Augmentation. Division of Water, Land and Biodiversity Conservation Report No. 2004/56. https://www.waterconnect.sa.gov.au/Content material/Publications/DEW/dwlbc_report_2004_56.pdf (2004).

  • Everett, R. R. et al. Geology, water-quality, hydrology, and geomechanics of the Cuyama Valley groundwater basin, California, 2008–12. U.S. Geological Survey Scientific Investigations Report 2013-5108. https://pubs.usgs.gov/sir/2013/5108/pdf/sir2013-5108.pdf (2013).

  • Ezquerro, P. et al. Groundwater and subsidence modeling combining geological and multi-satellite SAR information over the alto Guadalentín Aquifer (SE Spain). Geofluids, 1359325. https://doi.org/10.1155/2017/1359325 (2017).

  • Faghihi, N., Kave, F. & Babazadeh, H. Prediction of aquifer response to totally different hydrological and administration eventualities utilizing visible MODFLOW model-case research of Qazvin plain. J. Water Sci. Res. 2, 39–45 (2010).


    Google Scholar
     

  • Fallahi, M. M., Shabanlou, S., Rajabi, A., Yosefvand, F. & IzadBakhsh, M. A. Results of local weather change on groundwater degree variations affected by uncertainty (case research: Razan aquifer). Appl. Water Sci. 13, 143 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Fang, J. & Ding, Y. J. Evaluation of groundwater contamination by NO3 utilizing geographical info system within the Zhangye Basin, Northwest China. Environ. Earth Sci. 60, 809–816 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Faunt, C. C. et al. Hydrogeology, hydrologic results of improvement, and simulation of groundwater circulate within the Borrego Valley, San Diego County, California. U.S. Geological Survey Scientific Investigations Report 2015-5150. https://pubs.usgs.gov/sir/2015/5150/sir20155150.pdf (2015).

  • Fayaji, I., Sayadi, M. H. & Mousazadeh, H. Potable groundwater evaluation utilizing multivariate Groundwater High quality Index approach. Glob. J. Environ. Sci. Manag. 5, 357–370 (2019).

    CAS 

    Google Scholar
     

  • Feitosa, F. A., Diniz, J. A. O., Kirchheim, R. E., Kiang, C. H. & Feitosa, E. C. in Groundwater Evaluation, Modeling, and Administration (eds Thangarajan, M. & Singh, V. P.) 33–57 (Routledge, 2016).

  • Fenelon, J. M. et al. Hydrogeologic atlas of aquifers in Indiana. U.S. Geological Survey Water-Sources Investigations Report 92-4142. https://pubs.er.usgs.gov/publication/wri924142 (1994).

  • Fenneman, N. M. & Johnson, D. W. Physiographic divisions of the conterminous United States. U.S. Geological Survey map, 1:7,000,000 scale (1946).

  • Ferguson, G. A., Betcher, R. N. & Grasby, S. E. Hydrogeology of the Winnipeg formation in Manitoba, Canada. Hydrol. J. 15, 573 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Fernández‐Chacón, F. et al. Isotopic composition (δ18O and δD) of precipitation and groundwater in a semi‐arid, mountainous space (Guadiana Menor basin, Southeast Spain). Hydrol. Course of. 24, 1343–1356 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Ferreira, A. L. Parnaiba Basin. Presentation at “Spherical 15 – Brazil: Oil and Fuel Concessions”. http://www.anp.gov.br/pictures/Palestras/Seminario_tecnico_R15_P4/Ingles/06_Bacia_do_Parnaiba_R15_INGLES.pdf (2018).

  • Ferris, D., Lypka, M. & Ferguson, G. Hydrogeology of the Judith River formation in southwestern Saskatchewan, Canada. Hydrol. J. 25, 1985–1995 (2017).

    ADS 

    Google Scholar
     

  • Fijani, E., Moghaddam, A. A., Tsai, F. T. C. & Tayfur, G. Evaluation and evaluation of hydrochemical traits of Maragheh-Bonab plain aquifer, northwest of Iran. Water Resour. Manag. 31, 765–780 (2017).

    Article 

    Google Scholar
     

  • Fijani, E., Nadiri, A. A., Moghaddam, A. A., Tsai, F. T. C. & Dixon, B. Optimization of DRASTIC technique by supervised committee machine synthetic intelligence to evaluate groundwater vulnerability for Maragheh–Bonab plain aquifer, Iran. J. Hydrol. 503, 89–100 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Finch, S. T., Mccoy, A. & Melis, E. Geologic controls on ground-water circulate within the Mimbres Basin, southwestern New Mexico. New Mexico Geological Society Information Ebook, 59th Subject Convention, 189–198. https://nmgs.nmt.edu/publications/guidebooks/downloads/59/59_p0189_p0198.pdf (2008).

  • Fisher, C. A. Geology and water sources of the Bighorn Basin, Wyoming. U.S. Geological Survey Skilled Paper 53. https://pubs.usgs.gov/pp/0053/report.pdf (1906).

  • Repair, P. F., Nelson, W. B., Lofgren, B. E. & Butler, R. G. Floor water within the Escalante Valley, Beaver, Iron, and Washington Counties, Utah. Technical Publication 6. https://waterrights.utah.gov/docSys/v920/w920/w9200085.pdf (1950).

  • Flint, L. E. et al. Geohydrology of Large Bear Valley, California: section 1—geologic framework, recharge, and preliminary evaluation of the supply and age of groundwater. U.S. Geological Survey Scientific Investigations Report 2012-5100. https://pubs.usgs.gov/sir/2012/5100/pdf/sir20125100.pdf (2012).

  • Flora, S. & Davis, T. Hydrologic Map Collection (HMS), Water Stage Change Map Collection (WLCMS), and Basin Sweep Evaluation Report ADWR Basins and Sub-Basins. Arizona Division of Water Sources Hydrology Division Subject Companies Part. https://www.azwater.gov/content material/hms-wlcms-and-basin-sweep-assessment-report-2009 (2009).

  • Florea, L. J., Hasenmueller, N. R., Branam, T. D., Frushour, S. S. & Powell, R. L. in GSA Subject Information: Historic Oceans, Orogenic Uplifts, and Glacial Ice: Geologic Crossroads in America’s Heartland Vol. 51 (ed. Florea, L. J.) 95–112 (Geological Society of America, 2018).

  • Flores-Márquez, E. L. et al. Numerical modeling of Etla Valley aquifer, Oax., Mexico: evolution and remediation eventualities. Geofís. Int. 47, 27–40 (2008).


    Google Scholar
     

  • Fontes, S. L., Meju, M. A., Maurya, V. P., La Terra, E. F. & Miquelutti, L. G. Deep construction of Parecis Basin, Brazil from 3D magnetotelluric imaging. J. S. Am. Earth Sci. 96, 102381 (2019).

    Article 

    Google Scholar
     

  • Fortin, G., Van Der Kamp, G. & Cherry, J. A. Hydrogeology and hydrochemistry of an aquifer-aquitard system inside glacial deposits, Saskatchewan, Canada. J. Hydrol. 126, 265–292 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Foster, S. Thailand: strengthening capability in groundwater sources administration. World Financial institution Case Profile Assortment #1. https://documents1.worldbank.org/curated/en/521371468308952444/pdf/388010PAPER0TH1WMATE1CP10101PUBLIC1.pdf (2002).

  • Foster, S., Garduño, H. & Tuinhof, A. Confronting the groundwater administration problem within the Deccan Traps Nation of Maharashtra – India. World Financial institution Case Profile Assortment Quantity 18 (2007).

  • Fram, M. S. & Belitz, Okay. Groundwater high quality within the Coastal Los Angeles Basin, California. U.S. Geological Survey Truth Sheet 2012-3096. https://pubs.er.usgs.gov/publication/70039952 (2008).

  • Frei, R. et al. The hyperlink between floor water and groundwater-based ingesting water–strontium isotope spatial distribution patterns and their relationships to Danish sediments. Appl. Geochem. 121, 104698 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Frick, E. Quantitative evaluation of groundwater circulate in valley-fill deposits in Steptoe Valley, Nevada. Doctoral dissertation, Univ. Nevada (1985).

  • Frimpter, M. H. & Homosexual, F. B. Chemical high quality of floor water on Cape Cod, Massachusetts. U.S. Geological Survey Water-Sources Investigations Report 79-65. https://pubs.usgs.gov/wri/1979/0065/report.pdf (1979).

  • Fuchs, E. H., King, J. P. & Carroll, Okay. C. Quantifying disconnection of groundwater from managed‐ephemeral floor water throughout drought and conjunctive agricultural use. Water Resour. Res. 55, 5871–5890 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Fuentes-Arreazola, M. A., Ramírez-Hernández, J. & Vázquez-González, R. Hydrogeological properties estimation from groundwater degree pure fluctuations evaluation as a low-cost software for the Mexicali Valley aquifer. Water 10, 586 (2018).

    Article 

    Google Scholar
     

  • Fürst, J., Bichler, A. & Konecny, F. Regional frequency evaluation of maximum groundwater ranges. Groundwater 53, 414–423 (2015).

    Article 

    Google Scholar
     

  • Furuno, Okay., Kagawa, A., Kazaoka, O., Kusuda, T. & Nirei, H. Groundwater administration based mostly on monitoring of land subsidence and groundwater ranges within the Kanto Groundwater Basin, Central Japan. Proc. Int. Assoc. Hydrol. Sci. 372, 53–57 (2015).


    Google Scholar
     

  • Gale, I. N. & Rutter, H. Okay. The Chalk aquifer of Yorkshire. British Geological Survey Analysis Report RR/06/04. http://nora.nerc.ac.uk/id/eprint/3700/1/RR06004.pdf (2006).

  • Gan, Y. et al. Hydrogeochemistry and arsenic contamination of groundwater within the Jianghan Plain, central China. J. Geochem. Explor. 138, 81–93 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Gannett, M. W., Lite, Okay. E., La Marche, J. L., Fisher, B. J. & Polette, D. J. Floor-water hydrology of the higher Klamath Basin, Oregon and California. U.S. Geological Survey Scientific Investigations Report 2007-5050. https://pubs.usgs.gov/sir/2007/5050/pdf/sir20075050.pdf (2007).

  • Gannett, M. W. & Breen, Okay. H. Groundwater ranges, tendencies, and relations to pumping within the Bureau of Reclamation Klamath Mission, Oregon and California. U.S. Geological Survey Open-File Report 2015-1145. https://pubs.usgs.gov/of/2015/1145/ofr20151145.pdf (2015).

  • Gannett, M. W., Lite Jr, Okay. E., Morgan, D. S. & Collins, C. A. Floor-water hydrology of the higher Deschutes Basin, Oregon. U.S. Geological Survey Water-Sources Investigations Report 00-4162. https://pubs.usgs.gov/wri/wri004162/ (2001).

  • Gao, X., Wang, Y., Li, Y. & Guo, Q. Enrichment of fluoride in groundwater below the affect of saline water intrusion on the salt lake space of Yuncheng basin, northern China. Environ. Geol. 53, 795–803 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • García-Meléndez, E., Ferrer Julià, M., Goy, J. L. & Zazo, C. Reconstrucción morfoestructural mediante modelos de elevación digital en un SIG del fondo de la cuenca sedimentaria de la Cubeta del Saltador (Cordilleras Béticas Orientales). https://digital.csic.es/deal with/10261/247828 (2002).

  • Gardner, P. M. & Kirby, S. Hydrogeologic and geochemical characterization of groundwater sources in Rush Valley, Tooele County, Utah. U.S. Geological Survey Scientific Investigations Report 2011-5068. https://pubs.usgs.gov/sir/2011/5068/pdf/sir20115068.pdf (2011).

  • Gardner, P. M. & Masbruch, M. D. Hydrogeologic and geochemical characterization of groundwater sources in Deep Creek Valley and adjoining areas, Juab and Tooele Counties, Utah, and Elko and White Pine Counties, Nevada. U.S. Geological Survey Scientific Investigations Report 2015-5097. https://pubs.usgs.gov/sir/2015/5097/sir20155097.pdf (2015).

  • Garduño, H. & Foster, S. Sustainable groundwater irrigation. Approaches to reconciling demand with sources. GW•MATE Strategic Overview Collection Quantity 4, World Financial institution. https://openknowledge.worldbank.org/server/api/core/bitstreams/a6957092-3680-52cd-9707-91143c386175/content material (2010).

  • Garzon-Vidueira, R. et al. Identification of nitrates origin in Limia river basin and pollution-determinant components. Agric. Ecosyst. Environ. 290, 106775 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gastmans, D., Chang, H. Okay. & Hutcheon, I. Steady isotopes (2H, 18O and 13C) in groundwaters from the northwestern portion of the Guarani Aquifer System (Brazil). Hydrol. J. 18, 1497–1513 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Geological Survey of Alabama. Evaluation of groundwater sources in Alabama, 2010-16. Geological Survey of Alabama Bulletin 186. https://www.gsa.state.al.us/img/Groundwater/docs/evaluation/00_B186_StatewideAssessment_Print_Document.pdf (2018).

  • George, B. G., Ray, J. S. & Kumar, S. Geochemistry of carbonate formations of the Chhattisgarh Supergroup, central India: implications for Mesoproterozoic international occasions. Can. J. Earth Sci. 56, 335–346 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • George, M. E., Babu, D. S., Akhil, T. & Rafeeque, M. Okay. Investigation on submarine groundwater discharge at Kozhikkode Coastal Aquifer, SW Western Ghats. J. Geol. Soc. India 92, 626–633 (2018).

    Article 

    Google Scholar
     

  • Gerber, R. E. & Howard, Okay. Hydrogeology of the Oak Ridges Moraine aquifer system: implications for cover and administration from the Duffins Creek watershed. Can. J. Earth Sci. 39, 1333–1348 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Ghadimi, F. & Ghomi, M. Statistical evaluation of the hydrogeochemical evolution of groundwater in alluvial aquifer of Arak Mighan playa, Markazi province, Iran. J. Water Sci. Res. 4, 31–45 (2012).


    Google Scholar
     

  • Ghafari, S., Banihabib, M. E. & Javadi, S. A framework to evaluate the affect of a hydraulic eradicating system of contaminate infiltration from a river into an aquifer (case research: Semnan aquifer). Groundw. Maintain. Dev. 10, 100301 (2020).

    Article 

    Google Scholar
     

  • Ghafari, S., Moradi, H. & Modares, R. Comparability of temporal and spatial adjustments of groundwater degree in Isfahan-Borkhar, Najafabad and Chadegan Plains. Phys. Geogr. Res. Q. 50, 141–160 (2018).


    Google Scholar
     

  • Ghanbari, N., Rangzan, Okay., Kabolizade, M. & Moradi, P. Enhance the outcomes of the DRASTIC mannequin utilizing synthetic intelligence strategies to evaluate groundwater vulnerability in Ramhormoz alluvial aquifer plain. J. Water Soil Conserv. 24, 45–65 (2017).


    Google Scholar
     

  • Ghazavi, R. & Ebrahimi, Z. Assessing groundwater vulnerability to contamination in an arid surroundings utilizing DRASTIC and GOD fashions. Int. J. Environ. Sci. Technol. 12, 2909–2918 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ghazaw, Y. M., Ghumman, A. R., Al-Salamah, I. & Khan, Q. U. Investigations of affect of recharge wells on groundwater in Buraydah by numerical modeling. Arab. J. Sci. Eng. 39, 713–724 (2014).

    Article 

    Google Scholar
     

  • Ghazifard, A., Moslehi, A., Safaei, H. & Roostaei, M. Results of groundwater withdrawal on land subsidence in Kashan Plain, Iran. Bull. Eng. Geol. Environ. 75, 1157–1168 (2016).

    Article 

    Google Scholar
     

  • Ghobadi, A., Cheraghi, M., Sobhanardakani, S., Lorestani, B. & Merrikhpour, H. Hydrogeochemical traits, temporal, and spatial variations for analysis of groundwater high quality of Hamedan–Bahar Plain as a serious agricultural area, West of Iran. Environ. Earth Sci. 79, 428 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gholami, F. & Malekian, A. Evaluation of spatio-temporal oscillations and physico-chemical properties of Azna-Aligudarz basin. Desert Ecosyst. Eng. J. 7, 57–70 (2018).


    Google Scholar
     

  • Gholami, V. C. Okay. W., Chau, Okay. W., Fadaee, F., Torkaman, J. & Ghaffari, A. Modeling of groundwater degree fluctuations utilizing dendrochronology in alluvial aquifers. J. Hydrol. 529, 1060–1069 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ghoochanian, E., Etebari, B. & Akbarpour, A. Integrating groundwater administration with WEAP and MODFLOW fashions (case research: Birjand Plain, east of Iran). MODFLOW and Extra, 2–5 (2013).

  • Ghorbani, H. & Sadabad, S. M. Annual adjustments in some qualitative parameters of groundwater in Shirvan Plain North East of Iran. World Acad. Eng. Technol. 68, 949–952 (2010).


    Google Scholar
     

  • Gill, H. E. & Farlekas, G. M. Geohydrologic maps of the Potomac-Raritan-Magothy aquifer system within the New Jersey Coastal Plain. U.S. Geological Survey Hydrologic Atlas 557. https://pubs.er.usgs.gov/publication/ha557 (1976).

  • Giménez-Forcada, E. Area/time improvement of seawater intrusion: a research case in Vinaroz coastal plain (Japanese Spain) utilizing HFE-Diagram, and spatial distribution of hydrochemical facies. J. Hydrol. 517, 617–627 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Giménez-Forcada, E. Use of the Hydrochemical Facies Diagram (HFE-D) for the analysis of salinization by seawater intrusion within the coastal Oropesa Plain: comparative evaluation with the coastal Vinaroz Plain, Spain. HydroResearch 2, 76–84 (2019).

    Article 

    Google Scholar
     

  • Gingerich, S. B. The consequences of withdrawals and drought on groundwater availability within the Northern Guam Lens Aquifer, Guam. U.S. Geological Survey Scientific Investigations Report 2013-5216. https://pubs.usgs.gov/sir/2013/5216/pdf/sir2013-5216.pdf (2013).

  • Goderniaux, P., Orban, P., Rorive, A., Brouyère, S. & Dassargues, A. Research of historic groundwater degree adjustments in two Belgian chalk aquifers within the context of local weather change impacts. Geol. Soc. Lond. Spec. Publ. 517, 203–211 (2023).

    Article 

    Google Scholar
     

  • Godfrey, L. V. et al. δ13C and 14C exercise of groundwater DOC and DIC within the volcanically energetic and arid Loa Basin of northern Chile. J. Hydrol. 595, 125987 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Godfrey, L. & van Dyk, G. Reserve willpower for the Pomfret-Vergelegen Dolomitic Aquifer, North West province. Report No ENV-P-C 2002 -031. https://scholar.ufs.ac.za/bitstream/deal with/11660/7396/Toscapercent20Reservepercent20Report.pdf?sequence=6&isAllowed=y (2002).

  • Golchin, I. & Moghaddam, M. A. Hydro-geochemical traits and groundwater high quality evaluation in Iranshahr plain aquifer, Iran. Environ. Earth Sci. 75, 317 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Golder Associates and Summit Environmental Consultants Ltd. Part 2 Okanagan Water Provide and Demand Mission: Groundwater Targets 2 and three Basin Research. Report back to Okanagan Basin Water Board. https://www.obwb.ca/wsd/about/project-reports (2009).

  • Gomo, M. & Vermeulen, D. A transboundary aquifer of potential concern in Southern Africa. Water Coverage 19, 1160–1171 (2017).

    Article 

    Google Scholar
     

  • Gonçalves, R. D., Teramoto, E. H. & Chang, H. Okay. Regional groundwater modeling of the Guarani Aquifer System. Water 12, 2323 (2020).

    Article 

    Google Scholar
     

  • González-Trinidad, J., Pacheco-Guerrero, A., Júnez-Ferreira, H., Bautista-Capetillo, C. & Hernández-Antonio, A. Figuring out groundwater recharge websites via environmental secure isotopes in an alluvial aquifer. Water 9, 569 (2017).

    Article 

    Google Scholar
     

  • Gopinath, S. et al. Hydrochemical traits and salinity of groundwater in components of Nagapattinam district of Tamil Nadu and the Union Territory of Puducherry, India. Carbonates Evaporites 33, 1–13 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gordon, A. D., Carleton, G. B. & Rosman, R. Water-level circumstances within the confined aquifers of the New Jersey Coastal Plain, 2013. U.S. Geological Survey Scientific Investigations Report 2019-5146. https://pubs.usgs.gov/sir/2019/5146/sir20195146.pdf (2021).

  • Gordon, C. H. Geology and underground waters of the Wichita area, north-central Texas. U.S. Geological Survey Water-Provide Paper 317. https://pubs.usgs.gov/wsp/0317/report.pdf (1913).

  • Goswami, S., Dey, S., Zakaulla, S. & Verma, M. B. Energetic rifting and bimodal volcanism in Proterozoic Papaghni sub-basin, Cuddapah basin (Andhra Pradesh), India. J. Earth Syst. Sci. 129, 21 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Goumehei, E., Geravandi, Y. & Wanglin, Y. A. N. A GIS-based research to research impact of water desk adjustments on DRASTIC mannequin: a case research of Kermanshah, Iran. Int. J. Environ. Geoinformatics 3, 1–10 (2016).

    Article 

    Google Scholar
     

  • Authorities of Western Australia’s Division of Water. Northern Perth Basin: geology, hydrogeology and groundwater sources. Division of Water Hydrological Bulletin Collection Report No. HB1. https://www.wa.gov.au/system/recordsdata/2022-04/Northernpercent20Perthpercent20Basinpercent20-%20geologypercent2Cpercent20hydrogeologypercent20andpercent20groundwaterpercent20resources.pdf (2017).

  • Authorities of Western Australia’s Division of Water. West Canning Basin groundwater allocation restrict report. Water useful resource allocation and planning report sequence, Report No. 52. https://www.wa.gov.au/system/recordsdata/2022-10/West-Canning-Basin-groundwater-allocation-limit-report.pdf (2012).

  • Graham, W. G. & Campbell, L. J. Groundwater sources of Idaho. Idaho Division of Water Sources report. https://idwr.idaho.gov/wp-content/uploads/websites/2/publications/198108-MISC-GW-Sources-ID.pdf (1981).

  • Grande, J. A., González, A., Beltran, R. & Sánchez‐Rodas, D. Utility of issue evaluation to the research of contamination within the aquifer system of Ayamonte‐Huelva (Spain). Groundwater 34, 155–161 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Grasby, S. E. & Betcher, R. N. Regional hydrogeochemistry of the carbonate rock aquifer, southern Manitoba. Can. J. Earth Sci. 39, 1053–1063 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grasby, S. E., Chen, Z., Hamblin, A. P., Wozniak, P. R. & Candy, A. R. Regional characterization of the Paskapoo bedrock aquifer system, southern Alberta. Can. J. Earth Sci. 45, 1501–1516 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Graves, R. P. Floor-water sources in Lajas Valley, Puerto Rico. U.S. Geological Survey Water-Sources Investigations Report 89-4182. https://pubs.usgs.gov/wri/1989/4182/report.pdf (1991).

  • Grey, H. H. Map of Indiana exhibiting physiographic divisions. Indiana Geological Survey Miscellaneous Map 69. https://scholarworks.iu.edu/dspace/bitstream/deal with/2022/27232/SR61_A1b.pdf (2001).

  • Nice Barrier Reef Marine Park Authority. Aircraft Basin Evaluation. Mackay Whitsunday Pure Useful resource Administration Area report. https://elibrary.gbrmpa.gov.au/jspui/bitstream/11017/2902/2/Aircraft-Basin-assessment-2013.pdf (2013).

  • Greenman, D. W., Bennett, G. D. & Swarzenski, W. V. Floor-water hydrology of the Punjab, West Pakistan, with emphasis on issues brought on by canal irrigation. U.S. Geological Survey Water-Provide Paper 1608-H. https://pubs.usgs.gov/wsp/1608h/report.pdf (1967).

  • Grenholm, O. H. M. The geodynamic evolution of a Paleoproterozoic orogenic system – an area to international perspective on the ca. 2.27-1.96 Ga Birimian Orogen within the Baoule Mossi area of West Africa. Thesis, Univ. Western Australia (2019).

  • Guerrero-Martínez, L., Hernández-Marín, M. & Burbey, T. J. Estimation of pure groundwater recharge within the Aguascalientes semiarid valley, Mexico. Rev. Mex. Cienc. Geol. 35, 268–278 (2018).

    Article 

    Google Scholar
     

  • Güler, C. & Thyne, G. D. Hydrologic and geologic components controlling floor and groundwater chemistry in Indian Wells-Owens Valley space, southeastern California, USA. J. Hydrol. 285, 177–198 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Gunnink, J. L., Pham, H. V., Oude Essink, G. H. & Bierkens, M. F. The three-dimensional groundwater salinity distribution and recent groundwater volumes within the Mekong Delta, Vietnam, inferred from geostatistical analyses. Earth Syst. Sci. Information 13, 3297–3319 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Guo, C., Shi, J., Zhang, Z. & Zhang, F. Utilizing tritium and radiocarbon to find out groundwater age and delineate the circulate regime within the Taiyuan Basin, China. Arab. J. Geosci. 12, 185 (2019).

    Article 

    Google Scholar
     

  • Guo, H. & Wang, Y. Geochemical traits of shallow groundwater in Datong basin, northwestern China. J. Geochem. Explor. 87, 109–120 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Guo, H. et al. Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Interior Mongolia. Environ. Pollut. 159, 876–883 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, Q., Wang, Y., Ma, T. & Ma, R. Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. J. Geochem. Explor. 93, 1–12 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Gupta, G., Erram, V. C. & Kumar, S. Temporal geoelectric behaviour of dyke aquifers in northern Deccan Volcanic Province, India. J. Earth Syst. Sci. 121, 723–732 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Gupta, P., Sharma, A. & Joshi, N. Hydrochemical characterization of coastal groundwater in Porbandar Area, Gujarat, India. Int. J. Eng. Res. Gen. Sci. 3, 325–331 (2015).


    Google Scholar
     

  • Gupta, S. Okay. & Deshpande, R. D. Origin of groundwater helium and temperature anomalies within the Cambay area of Gujarat, India. Chem. Geol. 198, 33–46 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gupte, P. R. Overview of aquifer system of Deccan entice space, Gujarat state. Proceedings of the Fifth Worldwide Floor Water Congress (2012).

  • Gutentag, E. D., Heimes, F. J., Krothe, N. C., Luckey, R. R. & Weeks, J. B. Geohydrology of the Excessive Plains aquifer in components of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. U.S. Geological Survey Skilled Paper 1400-B. https://pubs.usgs.gov/pp/1400b/report.pdf (1984).

  • Gxokwe, S., Xu, Y. & Kanyerere, T. Eventualities evaluation utilizing water-sensitive city design rules: a case research of the Cape Flats Aquifer in South Africa. Hydrogeol. J. 28, 2009–2023 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ha, Q. Okay., Ngoc, T. D. T., Le Vo, P., Nguyen, H. Q. & Dang, D. H. Groundwater in Southern Vietnam: understanding geochemical processes to higher protect the essential water useful resource. Sci. Whole Environ. 807, 151345 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Habermehl, M. A. The evolving understanding of the Nice Artesian Basin (Australia), from discovery to present hydrogeological interpretations. Hydrol. J. 28, 13–36 (2020).


    Google Scholar
     

  • Hafezparast, M. Monitoring groundwater degree adjustments of Mianrahan aquifer with GRACE satellite tv for pc information. Iran. J. Irrig. Drain. 2, 428–443 (2021).


    Google Scholar
     

  • Halford, Okay. J. & Barber, N. L. Evaluation of ground-water circulate within the Catahoula aquifer system within the neighborhood of Laurel and Hattiesburg, Mississippi. U.S. Geological Survey Water-Sources Investigations Report 94-4219. https://pubs.usgs.gov/wri/1994/4219/report.pdf (1995).

  • Hamid Reza, N. & Ferdows, S. N. Evaluating vulnerability delineative of aquifer utilizing drastic and fuzzy logic strategies (case research: Gulgir Plain of Masjed Solieman, Iran). Proceedings of convention entitled “GIS Ostrava 2012 – Floor fashions for geosciences”. http://gisak.vsb.cz/GIS_Ostrava/GIS_Ova_2012/sbornik/papers/nassery.pdf (2012).

  • Hamlin, H. Water sources of the Salinas Valley, California. U.S. Geological Survey Water-Provide and Irrigation Paper No. 89. https://pubs.usgs.gov/wsp/0089/report.pdf (1904).

  • Hamlin, S. N. Floor-water high quality within the Santa Rita, Buellton, and Los Olivos hydrologic subareas of the Santa Ynez River basin, Santa Barbara County, California. U.S. Geological Survey Water-Sources Investigations Report 84-4131. https://pubs.usgs.gov/wri/1984/4131/report.pdf (1985).

  • Han, D. M., Tune, X. F., Currell, M. J., Yang, J. L. & Xiao, G. Q. Chemical and isotopic constraints on evolution of groundwater salinization within the coastal plain aquifer of Laizhou Bay, China. J. Hydrol. 508, 12–27 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Han, Y. L., Kuo, M. T., Fan, Okay. C., Chiang, C. J. & Lee, Y. P. Radon distribution in groundwater of Taiwan. Hydrol. J. 14, 173–179 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Handman, E. H., Londquist, C. J. & Maurer, D. Okay. Floor-water sources of Honey Lake Valley, Lassen County, California, and Washoe County, Nevada. U.S. Geological Survey Water-Sources Investigations Report 90-4050. https://pubs.usgs.gov/wri/1990/4050/report.pdf (1990).

  • Hanna, J. Affect of Conceptual Mannequin Uncertainty on Recharge Processes for the Wallal Aquifer System within the West Canning Basin, Western Australia. MSc thesis, Univ. Western Australia (2014).

  • Hanson, R. T. Hydrologic framework of the Santa Clara Valley, California. Geosphere 11, 606–637 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Hanson, R. T. Aquifer-system compaction, Tucson Basin and Avra Valley, Arizona. U.S. Geological Survey Water-Sources Investigations Report 88-4172. https://pubs.usgs.gov/wri/1988/4172/report.pdf (1989).

  • Hanson, R. T., Martin, P. & Koczot, Okay. M. Simulation of ground-water/surface-water circulate within the Santa Clara-Calleguas ground-water basin, Ventura County, California. U.S. Geological Survey Water-Sources Investigations Report 2002-4136. https://pubs.usgs.gov/wri/wri024136/wrir024136.pdf (2002).

  • Hanson, R. T., McLean, J. S. & Miller, R. S. Hydrogeologic framework and preliminary simulation of ground-water circulate within the Mimbres Basin, Southwestern New Mexico. U.S. Geological Survey Water-Sources Investigations Report 94-4011. https://pubs.usgs.gov/wri/1994/4011/report.pdf (1994).

  • Han-xue, Q., Dong-yan, L., Guan-qun, L. & Pi-hai, N. Saline water intrusion and its affect within the Laizhou space. Chin. J. Oceanol. Limnol. 15, 342–349 (1997).

    Article 

    Google Scholar
     

  • Hao, L., Solar, G., Liu, Y. & Qian, H. Built-in modeling of water provide and demand below administration choices and local weather change eventualities in Chifeng Metropolis, China. J. Am. Water Resour. Assoc. 51, 655–671 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Harden, S. L., Superb, J. M. & Spruill, T. B. Hydrogeology and ground-water high quality of Brunswick County, North Carolina. U.S. Geological Survey Water-Sources Investigations Report 03-4051. https://pubs.usgs.gov/wri/2003/4051/wri20034051.pdf (2003).

  • Harrill, J. R. & Prudic, D. E. Aquifer methods within the Nice Basin area of Nevada, Utah, and adjoining states—abstract report. U.S. Geological Survey Skilled Paper 1409-A. https://pubs.usgs.gov/pp/1409a/report.pdf (1998).

  • Harrington, G. A., Cook dinner, P. G. & Herczeg, A. L. Spatial and temporal variability of floor water recharge in central Australia: a tracer strategy. Groundwater 40, 518–527 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Harrington, G. A., Walker, G. R., Love, A. J. & Narayan, Okay. A. A compartmental mixing-cell strategy for the quantitative evaluation of groundwater dynamics within the Otway Basin, South Australia. J. Hydrol. 214, 49–63 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Harrington, G. A., Herczeg, A. L. & Cook dinner, P. G. Groundwater sustainability and water high quality within the Ti-Tree Basin, Central Australia. CSIRO report. http://hdl.deal with.web/102.100.100/213199?index=1 (1999).

  • Hart Jr, D. L. & Davis, R. E. Geohydrology of the Antlers aquifer (Cretaceous), southeastern Oklahoma. U.S. Geological Survey Round 81. http://www.ogs.ou.edu/pubsscanned/Circulars/circular81mm.pdf (1981).

  • Harte, P. T., Robinson Jr, G. R., Ayotte, J. D. & Flanagan, S. F. Framework for evaluating water high quality of the New England crystalline rock aquifers. U.S. Geological Survey Open-File Report 2008-1282. https://pubs.usgs.gov/of/2008/1282/pdf/ofr2008-1282.pdf (2008).

  • Hasan, M., Shang, Y., Akhter, G. & Jin, W. Utility of VES and ERT for delineation of fresh-saline interface in alluvial aquifers of Decrease Bari Doab, Pakistan. J. Appl. Geophys. 164, 200–213 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Hashemi, H., Berndtsson, R. & Kompani-Zare, M. Regular-state unconfined aquifer simulation of the Gareh-Bygone Plain, Iran. Open Hydrol. J. 6, 58–67 (2012).

    Article 

    Google Scholar
     

  • Hawley, J. W., Haase, C. S. & Lozinsky, R. P. An underground view of the Albuquerque Basin. Report No. CONF-9411293-TRN: IM9704%%261, 37–55. https://www.osti.gov/biblio/415630 (1995).

  • Hawley, J. W. & Lozinsky, R. P. Hydrogeologic framework of the Mesjlla Basin in New Mexico and western Texas. New Mexico Bureau of Mines and Mineral Sources Open-File Report 323. https://geoinfo.nmt.edu/publications/openfile/downloads/300-399/323/ofr_323.pdf (1992).

  • Hays, P. D., Knierim, Okay. J., Breaker, B., Westerman, D. A. & Clark, B. R. Hydrogeology and hydrologic circumstances of the Ozark Plateaus aquifer system. U.S. Geological Survey Scientific Investigations Report 2016-5137. https://pubs.er.usgs.gov/publication/sir20165137 (2016).

  • Hearne, G. A. et al. Colorado ground-water high quality. U.S. Geological Survey Open-File Report 87-716. https://pubs.usgs.gov/of/1987/0716/report.pdf (1987).

  • Heaton, T. H. E. Isotopic and chemical facets of nitrate within the groundwater of the Springbok Flats. Water SA 11, 199–208 (1985).

    CAS 

    Google Scholar
     

  • Heaton, T. H. E., Talma, A. S. & Vogel, J. C. Dissolved fuel paleotemperatures and 18O variations derived from groundwater close to Uitenhage, South Africa. Quat. Res. 25, 79–88 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Hekmatnia, H., Barzegari Banadkooki, F., Moosavi, V. & Zare Chahouki, A. Analysis of groundwater suitability for ingesting, irrigation, and industrial functions (case research: Yazd-Ardakan Aquifer, Yazd Province, Iran). ECOPERSIA 9, 11–21 (2021).


    Google Scholar
     

  • Helweg, O. J. & Labadie, J. W. A salinity administration technique for stream-aquifer methods. Colorado State College Hydrology Papers. https://mountainscholar.org/bitstream/deal with/10217/61846/HydrologyPapers_n84.pdf?sequence=1 (1976).

  • Hemmati, F., Sajadi, Z. & Jamshidi, A. R. Evaluation of groundwater vulnerability within the Borazjan Aquifer of Bushehr, south of Iran, utilizing GIS approach. Indian J. Fundam. Appl. Life Sci. 4, 415–425 (2014).


    Google Scholar
     

  • Henry, R., Lindsay, Okay., Wolcott, B., Patten, S. & Baker, T. Walla Walla Basin Aquifer Recharge Strategic Plan. Walla Walla Basin Watershed Council report. https://wwbwc.org/index.php/recharge?spotlight=WyJyZWNoYXJnZSIsInN0cmF0ZWdpYyIsInBsYW4iXQ== (2013).

  • Herczeg, A. L., Dogramaci, S. S. & Leaney, F. W. J. Origin of dissolved salts in a big, semi-arid groundwater system: Murray Basin, Australia. Mar. Freshwater Res. 52, 41–52 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Hernández, F. et al. Pesticide residues and transformation merchandise in groundwater from a Spanish agricultural area on the Mediterranean Coast. Int. J. Environ. Anal. Chem. 88, 409–424 (2008).

    Article 

    Google Scholar
     

  • Herrera-Barrientos, J. et al. Willpower of hydraulic transmissivity in coastal aquifer by optimum estimation of the Qe-T relationship utilizing Kalman filter. Hidrobiológica 30, 211–219 (2020).

    Article 

    Google Scholar
     

  • Herrera, C. et al. Recharge and residence occasions of groundwater in hyper arid areas: the confined aquifer of Calama, Loa River Basin, Atacama Desert, Chile. Sci. Whole Environ. 752, 141847 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Herrera, E. & Garfias, J. Characterizing a fractured aquifer in Mexico utilizing geological attributes associated to open-pit groundwater. Hydrol. J. 21, 1323–1338 (2013).

    ADS 

    Google Scholar
     

  • Herrera, M. T. A., Montenegro, I. F., Navar, P. R., Domínguez, I. R. M. & Vázquez, R. T. Contenido de arsénico en el agua potable del valle del Guadiana, México. Tecnol. Cienc. Agua 16, 63–70 (2001).


    Google Scholar
     

  • Herrera, N. B. et al. Hydrogeologic framework and chosen parts of the groundwater finances for the higher Umatilla River Basin, Oregon. U.S. Geological Survey Scientific Investigations Report 2017-5020. https://pubs.usgs.gov/sir/2017/5020/sir20175020.pdf (2017).

  • Herrera, N. B., Burns, E. R. & Conlon, T. D. Simulation of groundwater circulate and the interplay of groundwater and floor water within the Willamette Basin and Central Willamette Subbasin, Oregon. U.S. Geological Survey Scientific Investigations Report 2014-5136. https://pubs.usgs.gov/sir/2014/5136/pdf/sir20145136.pdf (2014).

  • Hidalgo, M. C. & Cruz-Sanjulián, J. Groundwater composition, hydrochemical evolution and mass switch in a regional detrital aquifer (Baza basin, southern Spain). Appl. Geochem. 16, 745–758 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hirata, R. & Foster, S. The Guarani Aquifer System–from regional reserves to native use. Q. J. Eng. Geol. Hydrogeol. 54, qjegh2020–qjegh2091 (2021).

    Article 

    Google Scholar
     

  • Hirata, R. & Suhogusoff, A. V. How a lot do we all know concerning the groundwater high quality and its affect on Brazilian society at present? Acta Limnol. Bras. 31, e109 (2019).

    Article 

    Google Scholar
     

  • Hoffman, S., Hunkeler, D. & Maurer, M. Approvisionnement en eau et assainissement des eaux usées durables en Suisse: défis et mesures possibles. PNR 61 – Synthèse thématique 3 dans le cadre du Programme nationwide de recherche PNR 61. Gestion sturdy de l’eau. https://media.snf.ch/rWjOZoYQfS9iabW/nfp61_thematische_synthese_3_f.pdf (2014).

  • Holland, M. Hydrogeological Characterisation of Crystalline Basement Aquifers Inside the Limpopo Province, South Africa. PhD thesis, Univ. Pretoria (2011).

  • Holmberg, M. J. Hydrogeologic traits and geospatial evaluation of water-table adjustments within the alluvium of the decrease Arkansas River Valley, southeastern Colorado, 2002, 2008, and 2015. U.S. Geological Survey Scientific Investigations Map 3378. https://pubs.usgs.gov/sim/3378/sim3378.pdf (2017).

  • Holmes, W. F. & Thiros, S. A. Floor-water hydrology of Pahvant Valley and adjoining areas, Utah. U.S. Geological Survey Technical Publication No. 98. https://waterrights.utah.gov/docSys/v920/y920/y9200006.pdf (1990).

  • Honarbakhsh, A. et al. GIS-based evaluation of groundwater high quality for ingesting function in northern a part of Fars province, Marvdasht. J. Water Provide Res. Technol. AQUA 68, 187–196 (2019).

    Article 

    Google Scholar
     

  • Hood, J. W. Traits of aquifers within the northern Uinta Basin space, Utah and Colorado. U.S. Geological Survey and Utah Division of Pure Sources, Division of Water Rights Technical Publication No. 53. https://waterrights.utah.gov/docSys/v920/w920/w920009f.pdf (1976).

  • Hood, J. W. Hydrologic analysis of Ashley Valley, northern Uinta Basin space, Utah. U.S. Geological Survey and Utah Division of Pure Sources, Division of Water Rights Technical Publication No. 54. https://pubs.usgs.gov/unnumbered/70043723/report.pdf (1977).

  • Hosono, T. et al. Completely different isotopic evolutionary tendencies of δ34S and δ18O compositions of dissolved sulfate in an anaerobic deltaic aquifer system. Appl. Geochem. 46, 30–42 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hosono, T. et al. A number of isotope (H, O, N, S and Sr) strategy elucidates advanced air pollution causes within the shallow groundwaters of the Taipei city space. J. Hydrol. 397, 23–36 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hosseini Poor, H., Ghaioomeyan, J., Ghasemi, A. R. & Choopani, S. Investigating salt sources in Sarchahan aquifer in Hormozghan province utilizing ion ratios. Watershed Eng. Manag. 1, 212–226 (2010).


    Google Scholar
     

  • Hosseini, M. & Saremi, A. Evaluation and estimating groundwater vulnerability to air pollution utilizing a modified DRASTIC and GODS fashions (case research: Malayer Plain of Iran). Civ. Eng. J. 4, 433–442 (2018).

    Article 

    Google Scholar
     

  • Hosseini, S. M., Parizi, E., Ataie-Ashtiani, B. & Simmons, C. T. Evaluation of sustainable groundwater sources administration utilizing built-in environmental index: case research throughout Iran. Sci. Whole Environ. 676, 792–810 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hosseni, M. S., Jahanshahi, R., Asadi, N. & Nasiri, M. A. Qualitative research of groundwater sources within the Hassanabad-Dehchah, Northeast of Neyriz, Fars province. Hydrogeology 5, 150–165 (2020).


    Google Scholar
     

  • Hsieh, P. A. et al. Floor-water circulate mannequin for the Spokane valley-Rathdrum prairie aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho. U.S. Geological Survey Scientific Investigations Report 2007-5044. https://pubs.usgs.gov/sir/2007/5044/pdf/sir20075044.pdf (2007).

  • Hsu, Okay. C., Wang, C. H., Chen, Okay. C., Chen, C. T. & Ma, Okay. W. Local weather-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrol. J. 15, 903–913 (2007).

    ADS 

    Google Scholar
     

  • Hsu, S. Okay. Plan for a groundwater monitoring community in Taiwan. Hydrol. J. 6, 405–415 (1998).

    ADS 

    Google Scholar
     

  • Huang, Y. et al. Sources of groundwater pumpage in a layered aquifer system within the Higher Gulf Coastal Plain, USA. Hydrol. J. 20, 783–796 (2012).

    ADS 

    Google Scholar
     

  • Huber, E., Hendricks‐Franssen, H. J., Kaiser, H. P. & Stauffer, F. The function of prior mannequin calibration on predictions with ensemble Kalman filter. Groundwater 49, 845–858 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Hudak, P. F. Chloride and nitrate distributions within the Hickory aquifer, Central Texas, USA. Environ. Int. 25, 393–401 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Huff, G. F. Simulation of ground-water circulate within the basin-fill aquifer of the Tularosa Basin, south-central New Mexico, predevelopment via 2040. U.S. Geological Survey Scientific Investigations Report 2004-5197. https://pubs.usgs.gov/sir/2004/5197/pdf/sir20045197.pdf (2005).

  • Hughes, J. L. Analysis of ground-water high quality within the Santa Maria Valley, California. U.S. Geological Survey, Water-Sources Investigations 76-128. https://pubs.usgs.gov/wri/1976/0128/report.pdf (1977).

  • Hui, Q. & Li, P. Hydrochemical traits of groundwater in Yinchuan plain and their management components. Asian J. Chem. 23, 2927 (2011).


    Google Scholar
     

  • Hunter, H. M. Vitamins and herbicides in groundwater flows to the Nice Barrier Reef lagoon. Processes, fluxes and hyperlinks to on-farm administration. Report by people related to the Australian Rivers Institute and Griffith College. https://www.qld.gov.au/__data/belongings/pdf_file/0027/69066/rp51c-grounderwater-synthesis-great-barrier-reef.pdf (2012).

  • Huntington, J. L., Minor, B., Bromley, M. & Morton, C. Reconnaissance investigation of phreatophyte vegetation vigor for chosen hydrographic areas in Nevada. Division of Hydrologic Sciences, Desert Analysis Institute. http://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/nevada/water/Paperwork/Finalpercent20DRI-TNCpercent20spatiotemporalpercent20phreatophytepercent20report_may31.pdf (2018).

  • Hurlow, H. A. Hydrogeologic research and groundwater monitoring in Snake Valley and adjoining hydrographic areas, west-central Utah and east-central Nevada. Utah Geol. Surv. Bull. 135, 272 (2014).


    Google Scholar
     

  • Hussain, S. D. et al. Floor water/groundwater relationship in Chaj Doab. Pakistan Institute of Nuclear Science & Expertise Report No. PINSTECH/RIAD-122. https://inis.iaea.org/assortment/NCLCollectionStore/_Public/22/031/22031202.pdf?r=1 (1990).

  • Hussain, Y. et al. Modelling the vulnerability of groundwater to contamination in an unconfined alluvial aquifer in Pakistan. Environ. Earth Sci. 76, 84 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Hutchinson, R. D. & Klausing, R. L. Floor-water sources of Ramsey County, North Dakota. North Dakota State Water Fee Report. https://www.swc.nd.gov/info_edu/reports_and_publications/county_groundwater_studies/pdfs/Ramsey_Part_III.pdf (1980).

  • Iepure, S., Martinez-Hernandez, V., Herrera, S., Rasines-Ladero, R. & de Bustamante, I. Response of microcrustacean communities from the floor—groundwater interface to water contamination in city river system of the Jarama basin (central Spain). Environ. Sci. Pollut. Res. 20, 5813–5826 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Imes, J. L. & Emmett, L. F. Geohydrology of the Ozark Plateaus aquifer system in components of Missouri, Arkansas, Oklahoma, and Kansas. U.S. Geological Survey Skilled Paper 1414-D). https://pubs.usgs.gov/pp/1414d/report.pdf (1994).

  • Instituto Mexicano de Tecnología del Agua (IMTA). Plan estatal hidrico 2040 de Chihuahua. Report (contract) quantity 060-207-E75-JCAS-PRODDER. https://www.nadb.org/uploads/recordsdata/1_plan_estatal_hdrico_de_chihuahua_2040_2018.pdf (2018).

  • Worldwide Boundary and Water Fee (IBWC). Hydrogeological actions within the Conejos-Medanos/Mesilla Basin Aquifer, Chihuahua Part I. Worldwide Boundary and Water Fee report. https://www.ibwc.gov/wp-content/uploads/2023/07/Final_report_English_Mesilla_ConejosMedanos_Study-2011.pdf (2011).

  • Worldwide Hydrological Programme, Division of Water Sciences. Atlas of transboundary aquifers. International maps, regional cooperation and native inventories. UNESCO Report SC-2009/WS/22. https://unesdoc.unesco.org/ark:/48223/pf0000192145 (2009).

  • Izady, A. et al. Utility of “panel-data” modeling to foretell groundwater ranges within the Neishaboor Plain, Iran. Hydrol. J. 20, 435–447 (2012).

    ADS 

    Google Scholar
     

  • Jabbari, E., Fathi, M. & Moradi, M. Modeling groundwater high quality and amount to handle water sources within the Arak aquifer, Iran. Arab. J. Geosci. 13, 663 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jafari, F., Javadi, S., Golmohammadi, G., Karimi, N. & Mohammadi, Okay. Numerical simulation of groundwater circulate and aquifer-system compaction utilizing simulation and InSAR approach: Saveh basin, Iran. Environ. Earth Sci. 75, 833 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Jafari, H., Shirafkan, M., Bagheri, R. & Karami, G. H. Assessing sustainability of the Bahabad aquifer, Central Iran. Appl. Ecol. Environ. Res. 16, 2585–2602 (2018).

    Article 

    Google Scholar
     

  • Jahanshahi, A., Moghaddamnia, A. & Khosravi, H. Evaluation of desertification density utilizing IMDPA mannequin (case research: Shahr-Babak plain, Kerman Province). J. Vary Watershed Manag. 68, 247–267 (2015).


    Google Scholar
     

  • Jaimes-Palomera, L. R. et al. Geoquimica isotopica del sistema hidrogeologico del valle de Cuerna Vaca, estado de Morelos, Mexico. Geofís. Int. 28, 219–244 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • Jain, A. Okay. & Nayak, Okay. M. Aquifer map and administration plan, Porbandar District, Gujarat State. Central Floor Water Board report. http://cgwb.gov.in/cgwbpnm/publication-detail/1035 (2016).

  • Jamshidzadeh, Z. & Mirbagheri, S. A. Analysis of groundwater amount and high quality within the Kashan Basin, Central Iran. Desalination 270, 23–30 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Janardhana, M. R. & Khairy, H. Simulation of seawater intrusion in coastal aquifers: a case research on the Amol–Ghaemshahr coastal aquifer system, Northern Iran. Environ. Earth Sci. 78, 695 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jasrotia, A. S., Kumar, A. & Aasim, M. Morphometric evaluation and hydrogeomorphology for delineating groundwater potential zones of Western Doon Valley, Uttarakhand, India. Int. J. Geomat. Geosci. 2, 1078–1096 (2011).


    Google Scholar
     

  • Javadzadeh, H., Ataie-Ashtiani, B., Hosseini, S. M. & Simmons, C. T. Interplay of lake-groundwater ranges utilizing cross-correlation evaluation: a case research of Lake Urmia Basin, Iran. Sci. Whole Environ. 729, 138822 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Javanbakht, M., Asadi, V. & Dabiri, R. Analysis of hydrogeochemical traits and evolutionary strategy of groundwater in Jajarm Plain, Northeastern Iran. Environ. Water Eng. 6, 206–218 (2020).


    Google Scholar
     

  • Javanmard, Z. & Asghari Moghaddam, A. Utilizing statistical and hydrochemical fashions for qualitative evaluation of groundwater sources (case research: Mehraban plain, in East Azerbaijan). Water Soil Sci. 26, 31–50 (2016).


    Google Scholar
     

  • Javi, S. T., Malekmohammadi, B. & Mokhtari, H. Utility of geographically weighted regression mannequin to evaluation of spatiotemporal various relationships between groundwater amount and land use adjustments (case research: Khanmirza Plain, Iran). Environ. Monit. Assess. 186, 3123–3138 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Jawadi, H. A., Sagin, J. & Snow, D. D. An in depth evaluation of groundwater high quality within the Kabul Basin, Afghanistan, and suitability for future improvement. Water 12, 2890 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jebreen, H. et al. Recharge estimation in semi-arid karst catchments: Central West Financial institution, Palestine. Grundwasser 23, 91–101 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Jeddi, T. A. et al. Water sources standing to international adjustments within the Taznakht plain, Draa basin, Morocco. Entrance. Sci. Eng. 11, 43–58 (2023).


    Google Scholar
     

  • Jennings, S. P. Hydrogeology and groundwater evaluation of the water distribution space of the city of Hodges water division, Franklin and Marion Counties, Alabama. Geological Survey of Alabama report. https://www.ogb.state.al.us/img/Groundwater/OFR/OFR1311.pdf (2013).

  • Japan Worldwide Cooperation Company (JICA) The research on the groundwater potential analysis and administration plan within the southeast Kalahari (Stampriet) Artesian Basin within the Republic of Namibia. https://openjicareport.jica.go.jp/pdf/11681699_01.PDF (2002).

  • Jiménez-Martínez, J., Aravena, R. & Candela, L. The function of leaky boreholes within the contamination of a regional confined aquifer. A case research: the Campo de Cartagena area, Spain. Water Air Soil Pollut. 215, 311–327 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Jiráková, H., Huneau, F., Hrkal, Z., Celle-Jeanton, H. & Le Coustumer, P. Carbon isotopes to constrain the origin and circulation sample of groundwater within the north-western a part of the Bohemian Cretaceous Basin (Czech Republic). Appl. Geochem. 25, 1265–1279 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Jiráková, H. et al. Geothermal evaluation of the deep aquifers of the northwestern a part of the Bohemian Cretaceous basin, Czech Republic. Geothermics 40, 112–124 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Jocson, J. M. U., Jenson, J. W. & Contractor, D. N. Recharge and aquifer response: northern Guam lens aquifer, Guam, Mariana Islands. J. Hydrol. 260, 231–254 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Johnson, G. C., Zimmerman, T. M., Lindsey, B. D. & Gross, E. L. Elements affecting groundwater high quality within the Valley and Ridge aquifers, japanese United States, 1993–2002. U.S. Geological Survey Scientific Investigations Report 2011-5115. https://pubs.usgs.gov/sir/2011/5115/assist/sir2011-5115.pdf (2011).

  • Johnson, M. J. Floor-water circumstances within the Eureka Space, Humboldt County, California. U.S. Geological Survey Water-Sources Investigations 78-127. https://pubs.usgs.gov/wri/1978/0127/report.pdf (1975).

  • Jones, M. A. Geologic framework for the Puget Sound aquifer system, Washington and British Columbia. U.S. Geological Survey Skilled Paper 1424-C. https://pubs.usgs.gov/pp/1424c/report.pdf (1999).

  • Jordan, J. L. Aquifer parameter estimation from aquifer assessments and specific-capacity information in Cedar Valley and the Cedar Cross Space, Utah County, Utah. Utah Geological Survey Particular Research 146. https://ugspub.nr.utah.gov/publications/special_studies/ss-146/ss-146.pdf (2013).

  • Jordan, J. L. et al. Characterization of the groundwater system in Ogden Valley, Weber County, Utah, with emphasis on groundwater–surface-water interplay and the groundwater finances. Utah Geological Survey Report Particular Research 165. https://ugspub.nr.utah.gov/publications/special_studies/ss-165/ss-165.pdf (2019).

  • Joshi, S. Okay. et al. Strongly heterogeneous patterns of groundwater depletion in northwestern India. J. Hydrol. 598, 126492 (2021).

    Article 

    Google Scholar
     

  • Juran, L. et al. Improvement and software of a multi-scalar, participant-driven water poverty index in post-tsunami India. Int. J. Water Resour. Dev. 33, 955–975 (2017).

    Article 

    Google Scholar
     

  • Kadlecová, R. & Olmer, M. Overview of groundwater sources. Geol. Výzk. Mor. Slez. 18, 31–34 (2011).


    Google Scholar
     

  • Kahle, S. C. et al. Hydrogeologic framework and hydrologic finances parts of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho. U.S. Geological Survey Scientific Investigations Report 2011-5124. https://pubs.usgs.gov/sir/2011/5124/pdf/sir20115124.pdf (2011).

  • Kahle, S. C., Olsen, T. D. & Fasser, E. T. Hydrogeology of the Little Spokane River Basin, Spokane, Stevens, and Pend Oreille Counties, Washington. U.S. Geological Survey Scientific Investigations Report 2013-5124. https://pubs.usgs.gov/sir/2013/5124/pdf/sir20135124.pdf (2013).

  • Kalantari, N., Pawar, N. J. & Keshavarzi, M. R. Water useful resource administration within the intermountain Izeh Plain, Southwest of Iran. J. Mt. Sci. 6, 25–41 (2009).

    Article 

    Google Scholar
     

  • Kalantari, N., Rangzan, Okay., Thigale, S. S. & Rahimi, M. H. Website choice and cost-benefit evaluation for synthetic recharge within the Baghmalek plain, Khuzestan Province, southwest Iran. Hydrol. J. 18, 761–773 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Kale, V. S., Bodas, M., Chatterjee, P. & Pande, Okay. Emplacement historical past and evolution of the Deccan Volcanic Province, India. Episodes J. Int. Geosci. 43, 278–299 (2020).

    Article 

    Google Scholar
     

  • Kannan, N., Joseph, S. & Sheela, A. M. Characterization of groundwater within the shallow and deep aquifers of an agriculture-dominated tropical subhumid to semiarid area, India: a multivariate and GIS strategy. J. Indian Soc. Distant Sens. 49, 1853–1868 (2021).

    Article 

    Google Scholar
     

  • Kansas Geological Survey. Excessive Plains aquifer areas in Kansas. Kansas Excessive Plains Aquifer Atlas. https://geokansas.ku.edu/kansas-high-plains-aquifer-atlas (2021).

  • Kao, Y. H., Liu, C. W., Wang, P. L. & Liao, C. M. Impact of sulfidogenesis biking on the biogeochemical course of in arsenic-enriched aquifers within the Lanyang Plain of Taiwan: proof from a sulfur isotope research. J. Hydrol. 528, 523–536 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kapple, G. W., Mitten, H. T., Durbin, T. J. & Johnson, M. J. Evaluation of the Carmel Valley alluvial ground-water basin, Monterey County, California. U.S. Geological Survey Water-Sources Investigations Report 83-4280. https://pubs.usgs.gov/wri/1983/4280/report.pdf (1984).

  • Kar, G. et al. Built-in applied sciences to reinforce productiveness of seasonal deep waterlogged areas. Water Expertise Centre for Japanese Area Analysis Bulletin 40. http://www.iiwm.res.in/pdf/Bulletin_40.pdf (2007).

  • Kardan Moghaddam, H., Dehghani, M., Rahimzadeh Kivi, Z., Kardan Moghaddam, H. & Hashemi, S. R. Effectivity evaluation of AHP and fuzzy logic strategies in suitability mapping for synthetic recharging (case research: Sarbisheh basin, Southern Khorasan, Iran). Water Harvest. Res. 2, 57–67 (2017).


    Google Scholar
     

  • Kay, R. T. & Kraske, Okay. A. Floor-water ranges in aquifers used for residential provide, Campton Township, Kane County, Illinois. U.S. Geological Survey Water-Sources Investigations Report 96-4009. https://pubs.usgs.gov/wri/1996/4009/report.pdf (1996).

  • Kazmierczak, J. et al. Groundwater arsenic content material associated to the sedimentology and stratigraphy of the Purple River delta, Vietnam. Sci. Whole Environ. 814, 152641 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelbe, B. E. & Germishuyse, T. Geohydrological research of the first coastal aquifer in Zululand. Water Analysis Fee Report No. K5/720/1/01. https://www.wrc.org.za/wp-content/uploads/mdocs/720-1-01.pdf (2001).

  • Keller, C. Okay., Kamp, G. V. D. & Cherry, J. A. Fracture permeability and groundwater circulate in clayey until close to Saskatoon, Saskatchewan. Can. Geotech. J. 23, 229–240 (1986).

    Article 

    Google Scholar
     

  • Kelley, V. A., Deeds, N. E., Fryar, D. G. & Nicot, J. P. Groundwater availability fashions for the Queen Metropolis and Sparta aquifers. Contract report back to the Texas Water Improvement Board. https://www.twdb.texas.gov/groundwater/fashions/gam/qcsp/QCSP_Model_Report.pdf?d=29484 (2004).

  • Kendy, E. Floor-water sources of the Gallatin Native Water High quality District, southwestern Montana. U.S. Geological Survey Truth Sheet 007-01. https://pubs.usgs.gov/fs/2001/0007/report.pdf (2001).

  • Kennedy, J. R., Kahler, L. M. & Learn, A. L. Aquifer storage change and storage properties, 2010–2017, within the Large Chino Subbasin, Yavapai County, Arizona. U.S. Geological Survey Scientific Investigations Report 2019-5060. https://pubs.usgs.gov/sir/2019/5060/sir20195060.pdf (2019).

  • Kenny, S. Aquifers of the Capital Regional District. Capital Regional District report. https://www.env.gov.bc.ca/wsd/plan_protect_sustain/groundwater/aquifers/aquifers_crd/pdfs/aquif_crd.pdf, https://www.env.gov.bc.ca/wsd/plan_protect_sustain/groundwater/aquifers/aquifers_crd/pdfs/append_b.pdf (2004).

  • Kent, R. & Belitz, Okay. Floor-water high quality information within the Higher Santa Ana Watershed Research Unit, November 2006–March 2007: outcomes from the California GAMA Program. U.S. Geological Survey Information Collection 404. https://pubs.usgs.gov/ds/404/ds404.pdf (2009).

  • Kernodle, J. M. Hydrogeology and steady-state simulation of ground-water circulate within the San Juan Basin, New Mexico, Colorado, Arizona, and Utah. U.S. Geological Survey Water-Sources Investigations Report 95-4187. https://pubs.usgs.gov/wri/1995/4187/report.pdf (1996).

  • Khair, A. M., Li, C., Hu, Q., Gao, X. & Wanga, Y. Fluoride and arsenic hydrogeochemistry of groundwater at Yuncheng Basin, Northern China. Geochem. Int. 52, 868–881 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Khairy, H. & Janardhana, M. R. Hydrogeochemical options of groundwater of semi-confined coastal aquifer in Amol–Ghaemshahr plain, Mazandaran Province, Northern Iran. Environ. Monit. Assess. 185, 9237–9264 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khalili Naft Chali, A. & Shahidi, A. Comparability of lazy algorithms and M5 mannequin to estimate groundwater degree (case research: Plain Neyshabur). J. Water Soil. Sci. 21, 15–26 (2021).


    Google Scholar
     

  • Khashei-Siuki, A. & Sharifan, H. Comparability of AHP and FAHP strategies in figuring out appropriate areas for ingesting water harvesting in Birjand aquifer. Iran. Groundw. Maintain. Dev. 10, 100328 (2020).

    Article 

    Google Scholar
     

  • Khashei-Siuki, A. & Sarbazi, M. Analysis of ANFIS, ANN, and geostatistical fashions to spatial distribution of groundwater high quality (case research: Mashhad plain in Iran). Arab. J. Geosci. 8, 903–912 (2015).

    Article 

    Google Scholar
     

  • Khaska, M. et al. Origin of groundwater salinity (present seawater vs. saline deep water) in a coastal karst aquifer based mostly on Sr and Cl isotopes. Case research of the La Clape massif (southern France). Appl. Geochem. 37, 212–227 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Khazai, E. & Riggi, M. G. Impression of urbanization on the Khash aquifer, an arid area of southeast Iran. Worldwide Affiliation of Hydrological Sciences (IAHS) publication quantity 259, 211–218. https://iahs.data/uploads/dms/11462.211-217-259-Khazai.pdf (1999).

  • Kheirandish, M., Rahimi, H., Kamaliardakani, M. & Salim, R. Acquiring the impact of sewage community on groundwater high quality utilizing MT3DMS code: case research on Bojnourd plain. Groundw. Maintain. Dev. 11, 100439 (2020).

    Article 

    Google Scholar
     

  • Kheradpisheh, Z., Talebi, A., Rafati, L., Ghaneian, M. T. & Ehrampoush, M. H. Groundwater high quality evaluation utilizing synthetic neural community: a case research of Bahabad plain, Yazd, Iran. Desert 20, 65–71 (2015).


    Google Scholar
     

  • Khodabakhshi, N., Heidarzadeh, N. & Asadollahfardi, G. Vulnerability evaluation of an aquifer utilizing modified GIS‐based mostly strategies. J. Am. Water Works Assoc. 109, E170–E182 (2017).

    Article 

    Google Scholar
     

  • Khosravi, Okay., Bordbar, M., Paryani, S., Saco, P. M. & Kazakis, N. New hybrid-based strategy for enhancing the accuracy of coastal aquifer vulnerability evaluation maps. Sci. Whole Environ. 767, 145416 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Khosravi, Okay., Nejad Roshan, M. H. & Safari, A. Evaluation of geostatistical strategies for figuring out distribution patterns of groundwater sources in Sari-Neka coastal plain, northern Iran. Environ. Resour. Res. 5, 124–134 (2017).


    Google Scholar
     

  • Kidd, R. E. & Lambeth, D. S. Hydrogeology and ground-water high quality within the Black Belt space of west-central Alabama, and estimated water use for aquaculture, 1990. U.S. Geological Survey Water-Sources Investigations Report 94-4074. https://citeseerx.ist.psu.edu/viewdoc/obtain?doi=10.1.1.1015.2227&rep=rep1&sort=pdf (1995).

  • Kiran, D. A. & Ramaraju, H. Okay. The research of sea water intrusion utilizing chemical indicators within the Coastal Area of Mangaluru. 52nd Annual Conference of Indian Water Works Affiliation (IWWA) (2020).

  • Knechtel, M. M. & Lohr, E. W. Geology and ground-water sources of the Valley of Gila River and San Simon Creek, Graham County, Arizona; with a piece on the chemical character of the bottom water. U.S. Geological Survey Water-Provide Paper 796-F. https://pubs.usgs.gov/wsp/0796f/report.pdf (1938).

  • Knight, J. E., Gungle, B. & Kennedy, J. R. Assessing potential groundwater-level declines from future withdrawals within the Hualapai Valley, northwestern Arizona. U.S. Geological Survey Scientific Investigations Report 2021-5077. https://pubs.usgs.gov/sir/2021/5077/sir20215077.pdf (2021).

  • Knochenmus, L. A. Regional analysis of the hydrogeologic framework, hydraulic properties, and chemical traits of the intermediate aquifer system underlying southern west-central Florida. U.S. Geological Survey Scientific Investigations Report 2006-5013. https://pubs.usgs.gov/sir/2006/5013/pdf/2006-5013.pdf (2006).

  • Koch, U. & Heinicke, J. Hydrological influences on long-term fuel circulate tendencies at areas within the Vogtland/NW Bohemian seismic area (German-Czech border). Ann. Geophys. 60, 557–568 (2007).


    Google Scholar
     

  • Koci, J. Deep drainage potential of floor irrigated sugarcane within the Arriga Flats of far north Queensland. Report on enhancing software effectivity of furrow irrigated sugar cane utilizing SIRMOD and implications for rising saline groundwater within the Arriga Basin of Far North Queensland funded by Nationwide Program for Sustainable Irrigation. http://27.111.91.222/xmlui/bitstream/deal with/1/4125/JCU1101percent20Finalpercent20Report.pdf?sequence=1&isAllowed=y (2011).

  • Kováč, M., Sliva, L., Sopkova, B., Hlavata, J. & Škulová, A. Serravallian sequence stratigraphy of the northern Vienna Basin: excessive frequency cycles within the Sarmatian sedimentary report. Geol. Carpath. 59, 545–561 (2008).


    Google Scholar
     

  • Kralik, M. et al. Utilizing 18O/2H, 3H/3He, 85Kr and CFCs to find out imply residence occasions and water origin within the Grazer and Leibnitzer Feld groundwater our bodies (Austria). Appl. Geochem. 50, 150–163 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Krauze, P. et al. Microbiological and geochemical survey of CO2-dominated mofette and mineral waters of the Cheb Basin, Czech Republic. Entrance. Microbiol. 8, 2446 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulkarni, H., Deolankar, S. B., Lalwani, A., Joseph, B. & Pawar, S. Hydrogeological framework of the Deccan basalt groundwater methods, west-central India. Hydrol. J. 8, 368–378 (2000).

    ADS 

    Google Scholar
     

  • Kumar, A. & Singh, C. Okay. Arsenic enrichment in groundwater and related well being threat in Bari doab area of Indus basin, Punjab, India. Environ. Pollut. 256, 113324 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, M. D., Ghosh, S., Patel, A., Singh, O. P. & Ravindranath, R. Rainwater harvesting in India: some essential points for basin planning and analysis. Land Use Water Resour. Res. 6, 1–17 (2006).


    Google Scholar
     

  • Kumar, U. S., Sharma, S., Navada, S. V. & Deodhar, A. S. Environmental isotopes investigation on recharge processes and hydrodynamics of the coastal sedimentary aquifers of Tiruvadanai, Tamilnadu State, India. J. Hydrol. 364, 23–39 (2009).

    Article 

    Google Scholar
     

  • Kumar, V. S., Amarender, B., Dhakate, R., Sankaran, S. & Kumar, Okay. R. Evaluation of groundwater high quality for ingesting and irrigation use in shallow laborious rock aquifer of Pudunagaram, Palakkad District Kerala. Appl. Water Sci. 6, 149–167 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kuniansky, E. L., Bellino, J. C. & Dixon, J. Transmissivity of the Higher Floridan aquifer in Florida and components of Georgia, South Carolina, and Alabama. U.S. Geological Survey Scientific Investigations Map 3204. https://pubs.usgs.gov/sim/3204/pdf/USGS_SIM-3204_Kuniansky_Web.pdf (2012).

  • Kunkle, F. & Upson, J. E. Geology and floor water in Napa and Sonoma Valleys, Napa and Sonoma Counties, California. U.S. Geological Survey Water-Provide Paper 1495. https://pubs.usgs.gov/wsp/1495/report.pdf (1960).

  • La Gal La Salle, C., Marlin, C., Savoye, S. & Fontes, J. C. Geochemistry and 14C courting of groundwaters from Jurassic aquifers of North Aquitaine Basin (France). Appl. Geochem. 11, 433–445 (1996).

    Article 
    ADS 

    Google Scholar
     

  • La Rocque, G. A., Upson, J. E. & Worts Jr, G. F. Wells and water ranges in principal ground-water basins in Santa Barbara County, California. U.S. Geological Survey Water-Provide Paper 1068. https://pubs.usgs.gov/wsp/1068/report.pdf (1950).

  • Labus, Okay., Bujok, P., Klempa, M., Porzer, M. & Matýsek, D. Preliminary geochemical modeling of water–rock–fuel interactions controlling CO2 storage within the Badenian Aquifer inside Czech A part of Vienna Basin. Environ. Earth Sci. 75, 1086 (2016).

    Article 
    ADS 

    Google Scholar
     

  • LaFave, J. I. Potentiometric floor map of the southern a part of the Flathead Lake space, Lake, Missoula, Sanders Counties, Montana. Montana Floor-Water Evaluation Atlas No. 2, Half B, Map 4. Montana Bureau of Mines and Geology, A Division of Montana Tech of The College of Montana (2004).

  • LaFave, J. I., Smith, L. N. & Patton, T. W. Floor-water sources of the Flathead Lake space: Flathead, Lake, Missoula, and Sanders Counties, Montana. Half A – descriptive overview and water-quality information. Montana Bureau of Mines and Geology. Montana Floor-Water Evaluation Atlas 2. http://mbmg.mtech.edu/pdf/GWA_2.pdf (2004).

  • LaFave, J. High quality and age of water within the Madison Aquifer, Cascade County, Montana. Montana American Water Sources Affiliation Convention, Session 2. https://www.montanaawra.org/wp/ppts/2011/session2/5_LaFave_John_i.pdf (2011).

  • Lalehzari, R. & Tabatabaei, S. H. Simulating the affect of subsurface dam development on the change of nitrate distribution. Environ. Earth Sci. 74, 3241–3249 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lambán, L. J. & Aragón, R. in Groundwater and Saline Intrusion. Chosen Papers from the 18th Salt Water Intrusion Assembly (ed. Araguás, L.) 551–563 (2004).

  • Lambert, P. M., Marston, T., Kimball, B. A. & Stolp, B. J. Evaluation of groundwater/surface-water interplay and simulation of potential streamflow depletion induced by groundwater withdrawal, Uinta River close to Roosevelt, Utah. U.S. Geological Survey Scientific Investigations Report 2011-5044. https://pubs.usgs.gov/sir/2011/5044/pdf/sir20115044.pdf (2011).

  • LaMoreaux, P. E. et al. Reconnaissance of the geology and floor water of the Khorat Plateau, Thailand. U.S. Geological Survey Water-Provide Paper 1429. https://pubs.usgs.gov/wsp/1429/report.pdf (1958).

  • Lancaster, P. J., Dey, S., Storey, C. D., Mitra, A. & Bhunia, R. Okay. Contrasting crustal evolution processes within the Dharwar craton: insights from detrital zircon U–Pb and Hf isotopes. Gondwana Res. 28, 1361–1372 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Land and Water Commissioner. Groundwater: Gunnedah Basin NSW, what water info can inform us. Presentation. https://www.business.nsw.gov.au/__data/belongings/pdf_file/0020/104852/gunnedah-groundwater-presentation.pdf (2019).

  • Land, L. Overview of recent and brackish water high quality in New Mexico. Open-file report 583. https://geoinfo.nmt.edu/sources/water/amp/brochures/BWA/Estancia_Basin_FBWQNM.pdf (2016).

  • Land, L. Overview of recent and brackish water high quality in New Mexico. Mission Abstract Report, New Mexico Bureau of Geology and Mineral Sources, Open-file Report 583. https://geoinfo.nmt.edu/sources/water/amp/brochures/BWA/Raton_Las_Vegas_Basin_FBWQNM.pdf (2016).

  • Land, L. & Newton, B. T. Seasonal and long-term variations in hydraulic head in a karstic aquifer: Roswell artesian basin, New Mexico. New Mexico Bureau of Geology and Mineral Sources Open-File Report 503. https://geoinfo.nmt.edu/publications/openfile/downloads/500-599/503/ofr_503.pdf (2007).

  • Land, M. et al. Floor-water high quality of coastal aquifer methods within the West Coast Basin, Los Angeles County, California, 1999–2002. U.S. Geological Survey Scientific Investigations Report 2004-5067. https://pubs.usgs.gov/sir/2004/5067/sir2004-5067.pdf (2004).

  • Laney, R. L. & Hahn, M. E. Hydrogeology of the japanese a part of the Salt River Valley space, Maricopa and Pinal Counties, Arizona. U.S. Geological Survey Water-Sources Investigations Report 86-4147. https://pubs.er.usgs.gov/publication/wri864147 (1986).

  • Langenheim, V. E., Duval, J. S., Wirt, L. & DeWitt, E. Preliminary report on geophysics of the Verde River headwaters area, Arizona. U.S. Geological Survey Open-File Report 00-403. https://pubs.usgs.gov/of/2000/0403/pdf/of00-403p.pdf (2000).

  • Langeroudi, S. R. & Turkamani, S. M. Water high quality evaluation and hydrochemical traits of groundwater in Abhar Plain, Zanjan, Iran. J. Tethys 4, 209–220 (2016).

    CAS 

    Google Scholar
     

  • Langrudi, M. A. O., Siuki, A. Okay., Javadi, S. & Hashemi, S. R. Analysis of vulnerability of aquifers by improved fuzzy drastic technique: case research: Aastane Kochesfahan plain in Iran. Ain Shams Eng. J. 7, 11–20 (2016).

    Article 

    Google Scholar
     

  • Larque, P. La sédimentation et les paléoaltérations tertiaires de la plaine du Forez: nouvelles données. Essai de corrélations stratigraphiques. Sci. Géol. Bull. Mém. 34, 21–35 (1981).


    Google Scholar
     

  • LaVanchy, G. T., Adamson, J. Okay. & Kerwin, M. W. in International Groundwater: Supply, Shortage, Sustainability, Safety, and Options (eds Mukherjee, A. et al.) 439–449 (Elsevier, 2021).

  • Ledesma-Ruiz, R., Pastén-Zapata, E., Parra, R., Harter, T. & Mahlknecht, J. Investigation of the geochemical evolution of groundwater below agricultural land: a case research in northeastern Mexico. J. Hydrol. 521, 410–423 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, S. Investigating the Origin and Dynamics of Salinity in a Confined Aquifer System in Southeast Australia (Western Port Basin). BSc Thesis, RMIT Univ. (2015).

  • Lee, S., Currell, M. & Cendón, D. I. Marine water from mid-Holocene sea degree highstand trapped in a coastal aquifer: proof from groundwater isotopes, and environmental significance. Sci. Whole Environ. 544, 995–1007 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, W. T. Water sources of Beaver Valley, Utah. U.S. Geological Survey Water-Provide Paper 217. https://pubs.usgs.gov/wsp/0217/report.pdf (1908).

  • Leighton, M. M., Ekblaw, G. E. & Horberg, L. Physiographic divisions of Illinois. J. Geol. 56, 16–33 (1948).

    Article 
    ADS 

    Google Scholar
     

  • Leonard, G. J., Watts, Okay. R. Leonard, G. J. & Watts, Okay. R. Hydrogeology and simulated results of ground-water improvement on an unconfined aquifer within the Closed Basin Division, San Luis Valley, Colorado. U.S. Geological Survey Water-Sources Investigations Report 87-4284. https://pubs.usgs.gov/wri/1987/4284/report.pdf (1989).

  • Leonard, R. B., Signor, D. C., Jorgensen, D. G. & Helgesen, J. O. Geohydrology and hydrochemistry of the Dakota Aquifer, central United States. J. Am. Water Resour. Assoc. 19, 903–912 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Leonhard, L. Burton, Okay. & Milligan, N. in Groundwater within the Coastal Zones of Asia-Pacific (ed. Wetzelhuetter, C.) 359–378 (Springer, 2013).

  • Leopold, R. Groundwater useful resource analysis of the decrease Dakota Aquifer in northwest Iowa. Iowa Geological and Water Survey Water Sources Investigation Report No. 1B. https://publications.iowa.gov/26582/1/WRI-1b.pdf (2008).

  • Levi, E., Goldman, M., Tibor, G. & Herut, B. Delineation of subsea freshwater extension by marine geoelectromagnetic soundings (SE Mediterranean Sea). Water Resour. Manag. 32, 3765–3779 (2018).

    Article 

    Google Scholar
     

  • Lewis, C., Ray, D. & Chiu, Okay. Okay. Main geologic sources of arsenic within the Chianan Plain (Blackfoot illness space) and the Lanyang Plain of Taiwan. Int. Geol. Rev. 49, 947–961 (2007).

    Article 

    Google Scholar
     

  • Li, C., Gao, X. & Wang, Y. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China. Sci. Whole Environ. 508, 155–165 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H., Zhan, R., Lu, Y., Zhou, B. & Wu, J. Spatiotemporal variation and periodic evolution traits of groundwater within the Xining space of China, japanese Qinghai–Tibet Plateau. Environ. Earth Sci. 80, 799 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Li, J., Wang, Y., Xie, X. & Su, C. Hierarchical cluster evaluation of arsenic and fluoride enrichments in groundwater from the Datong basin, Northern China. J. Geochem. Explor. 118, 77–89 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. D., Liu, C. Q., Harue, M., Li, S. L. & Liu, X. L. Using environmental isotopic (C, Sr, S) and hydrochemical tracers to characterize anthropogenic results on karst groundwater high quality: a case research of the Shuicheng Basin, SW China. Appl. Geochem. 25, 1924–1936 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, Y., Wang, D., Liu, Y., Zheng, Q. & Solar, G. A predictive threat mannequin of groundwater arsenic contamination in China utilized to the Huai River Basin, with a concentrate on the area’s cluster of elevated most cancers mortalities. Appl. Geochem. 77, 178–183 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liang, C. P., Jang, C. S., Liang, C. W. & Chen, J. S. Groundwater vulnerability evaluation of the Pingtung Plain in Southern Taiwan. Int. J. Environ. Res. Public Well being 13, 1167 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, C. P., Solar, C. C., Suk, H., Wang, S. W. & Chen, J. S. A machine studying strategy for spatial mapping of the well being threat related to arsenic-contaminated groundwater in Taiwan’s Lanyang Plain. Int. J. Environ. Res. Public Well being 18, 11385 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, Okay. et al. Investigation of the Yellow River buried fault within the Wuhai basin, northwestern Ordos Block, China, utilizing deep/shallow seismic reflection and drilling methods. J. Asian Earth Sci. 163, 54–69 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lindholm, G. F. Abstract of the Snake River Plain regional aquifer-system evaluation in Idaho and japanese Oregon. U.S. Geological Survey Skilled Paper 1408-A. https://pubs.usgs.gov/pp/1408a/report.pdf (1996).

  • Lithuanian Geological Survey and Latvian Setting, Geology and Meteorology Centre. Cross-border groundwater physique characterization and standing evaluation. B-Options initiative report (2019).

  • Liu J. & Zheng C. in Built-in Groundwater Administration (eds Jakeman A. J., Barreteau O., Hunt R. J., Rinaudo J. D. & Ross A.) 455–475 (Springer, 2016).

  • Liu, C. H., Pan, Y. W., Liao, J. J., Huang, C. T. & Ouyang, S. Characterization of land subsidence within the Choshui River alluvial fan, Taiwan. Environ. Geol. 45, 1154–1166 (2004).

    Article 

    Google Scholar
     

  • Liu, C. W. & Chen, J. F. The simulation of geochemical reactions within the Heng-Chun limestone formation, Taiwan. Appl. Math. Mannequin. 20, 549–558 (1996).

    Article 

    Google Scholar
     

  • Liu, C. W., Chou, Y. L., Lin, S. T., Lin, G. J. & Jang, C. S. Administration of excessive groundwater degree aquifer within the Taipei Basin. Water Resour. Manag. 24, 3513–3525 (2010).

    Article 

    Google Scholar
     

  • Liu, J. et al. Research on the dynamic traits of groundwater within the valley plain of Lhasa Metropolis. Environ. Earth Sci. 77, 646 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Liu, S., Tang, Z., Gao, M. & Hou, G. Evolutionary strategy of saline-water intrusion in Holocene and Late Pleistocene groundwater in southern Laizhou Bay. Sci. Whole Environ. 607, 586–599 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Llamas, M. R., Simpson, E. S. & Alfaro, P. E. M. Floor‐water age distribution in Madrid Basin, Spain. Groundwater 20, 688–695 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Llopis-González, A., Sánchez, A. L., Requena, P. M. & Suárez-Varela, M. M. Evaluation of the microbiological high quality of groundwater in three areas of the Valencian Group (Spain). Int. J. Environ. Res. Public Well being 11, 5527–5540 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lloyd, J. W. & Jacobson, G. The hydrogeology of the Amadeus Basin, central Australia. J. Hydrol. 93, 1–24 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Loeltz, O. J. & Eakin, T. E. Geology and water sources of Smith Valley, Lyon and Douglas Counties, Nevada. U.S. Geological Survey Water-Provide Paper 1228. https://pubs.usgs.gov/wsp/1228/report.pdf (1953).

  • Londquist, C. J. & Livingston, R. Okay. Water-resources appraisal of the Moist Mountain Valley, in components of Custer and Fremont Counties, Colorado. U.S. Geological Survey Water-Sources Investigations 78-1. from https://pubs.usgs.gov/wri/1978/0001/report.pdf (1978).

  • Lengthy, A. J., Thamke, J. N., Davis, Okay. W. & Bartos, T. T. Groundwater availability of the Williston Basin, United States and Canada. U.S. Geological Survey Skilled Paper 1841. from https://pubs.usgs.gov/pp/1841/pp1841.pdf (2018).

  • Lopes, T. J. Hydrologic analysis of the Jungo space, southern Desert Valley, Nevada. U.S. Geological Survey Open-File Report 2010-1009. https://pubs.usgs.gov/of/2010/1009/pdf/ofr20101009.pdf (2010).

  • Lopes, T. J. & Evetts. D. M. Floor-water pumpage and synthetic recharge estimates for calendar 12 months 2000 and common annual pure recharge and interbasin circulate by hydrographic space, Nevada. U.S. Geological Survey Water-Sources Investigations Report 2004-5239. https://pubs.usgs.gov/sir/2004/5239/sir2004-5239.pdf (2005).

  • López-Geta, J. A., Del Barrio Beato, V. & Vega Martin, L. Explotación de las Aguas Subterráneas En El Duero: Los Retos De La Cuenca. Convention paper. https://www.researchgate.web/profile/Leticia-Vega-Martin/publication/276938341_EXPLOTACION_DE_LAS_AGUAS_SUBTERRANEAS_EN_EL_DUERO_LOS_RETOS_DE_LA_CUENCA/hyperlinks/555c6b3a08ae6aea08175a6e/EXPLOTACION-DE-LAS-AGUAS-SUBTERRANEAS-EN-EL-DUERO-LOS-RETOS-DE-LA-CUENCA.pdf (2006).

  • Loris, P. Hydrogeology of the Waipara Alluvial Basin. MSc thesis, Univ. Canterbury (2000).

  • Louisiana Division of Environmental High quality. Carrizo-Wilcox aquifer abstract report 2007. Aquifer Sampling and Evaluation Program (ASSET) Program. https://deq.louisiana.gov/belongings/docs/Water/Triennial_reports/AquiferSummaries_2007-2009/02Carrizo-WilcoxAquiferSummary09.pdf (2007).

  • Louisiana Division of Transportation and Improvement. Water Sources of Lafayette Parish. U.S. Geological Survey Truth Sheet 2010-3048. https://pubs.usgs.gov/fs/2010/3048/pdf/FS2010-3048.pdf (2011).

  • Louisiana Division of Transportation and Improvement. Water Sources of Orleans Parish, Louisiana. U.S. Geological Survey Truth Sheet 2014-3017. https://pubs.usgs.gov/fs/2014/3017/pdf/fs2014-3017.pdf (2014).

  • Louisiana Division of Transportation and Improvement. Water Sources of St. John the Baptist Parish, Louisiana. U.S. Geological Survey Truth Sheet 2014-3102. https://pubs.usgs.gov/fs/2014/3102/pdf/fs2014-3102.pdf (2014).

  • Love, A. J. et al. Groundwater residence time and palaeohydrology within the Otway Basin, South Australia: 2H, 18O and 14C information. J. Hydrol. 153, 157–187 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Lu, H. Y., Peng, T. R., Liu, T. Okay., Wang, C. H. & Huang, C. C. Research of secure isotopes for extremely deformed aquifers within the Hsinchu-Miaoli space, Taiwan. Environ. Geol. 50, 885–898 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lu, Okay. L., Liu, C. W. & Jang, C. S. Utilizing multivariate statistical strategies to evaluate the groundwater high quality in an arsenic-contaminated space of Southwestern Taiwan. Environ. Monit. Assess. 184, 6071–6085 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lü, X., Han, Z., Li, H., Zheng, Y. & Liu, J. Affect of urbanization on groundwater chemistry at Lanzhou Valley basin in China. Minerals 12, 385 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Luckey, R. L. & Becker, M. F. Hydrogeology, water use, and simulation of circulate within the Excessive Plains aquifer in northwestern Oklahoma, southeastern Colorado, southwestern Kansas, northeastern New Mexico, and northwestern Texas. U.S. Geological Survey Water-Sources Investigations Report 99-4104. https://pubs.usgs.gov/wri/wri994104/pdf/wri994104.pdf (2003).

  • Lund, J. R. Regional water provide improvement in south Sweden. J. City Plan. Dev. 114, 14–33 (1988).

    Article 

    Google Scholar
     

  • Luo, C. Y., Shen, S. L., Han, J., Ye, G. L. & Horpibulsuk, S. Hydrogeochemical surroundings of aquifer groundwater in Shanghai and potential hazards to underground infrastructures. Nat. Hazards 78, 753–774 (2015).

    Article 

    Google Scholar
     

  • Lyke, W. L. & Coble, R. W. Regional research of the Fortress Hayne Aquifer of japanese North Carolina. U.S. Geological Survey Open-File Report 87-571. https://pubs.usgs.gov/of/1987/0571/report.pdf (1987).

  • Maathuis, H. The standard of pure groundwaters in Saskatchewan. Saskatchewan Analysis Council Publication No. 12012-1E08. https://www.wsask.ca/PageFiles/2978/Thepercent20Qualitypercent20ofpercent20Naturalpercent20Groundwaterspercent20inpercent20Saskatchewan,%20Januarypercent202008,%20Maathuis,%20H.,%20SRCpercent20pub.%20No.%2012012-1E08.pdf (2008).

  • Maathuis, H. & Simpson, M. Groundwater sources of the prelate (72K) space, Saskatchewan. Saskatchewan Analysis Council Publication No. 11975-1E07. https://www.wsask.ca/wp-content/uploads/2021/08/Groundwater-Sources-Report-Prelate.pdf (2007).

  • Maathuis, H. & Simpson, M. Hydrogeology of the Ribstone Creek Aquiferin Western Canada. Saskatchewan Analysis Council Publication No. 11500-1E02. https://www.wsask.ca/PageFiles/2978/Hydrogeologypercent20ofpercent20thepercent20Ribstonepercent20Creekpercent20Aquiferpercent20inpercent20Westernpercent20Canada,%20Maathuis,%20H.,%20andpercent20Simpson,%20M.,%202002,%20SRCpercent20Pubpercent20Nopercent2011500-1E02.pdf (2002).

  • MacDonald, A. M. & Allen, D. J. Aquifer properties of the Chalk of England. Q. J. Eng. Geol. Hydrogeol. 34, 371–384 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Macfarlane, P. A., Doveton, J. H. & Whittemore, D. O. Person’s information to the Dakota Aquifer in Kansas. Kansas Geological Survey, Technical Collection 2. http://www.kgs.ku.edu/Publications/Bulletins/TS2/index.html (1998).

  • Macfarlane, P. A. Revisions to the nomenclature for Kansas Aquifers. Kansas Geological Survey report. https://journals.ku.edu/cres/article/obtain/11815/11159 (2000).

  • Machiwal, D., Islam, A. & Kamble, T. Traits and probabilistic stability index for evaluating groundwater high quality: the case of quaternary alluvial and quartzite aquifer system of India. J. Environ. Manag. 237, 457–475 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Machkova, M., Velikov, B., Machkova, M., Dimitrov, D. & Neytchev, N. in Pure Groundwater High quality (eds Edmunds, W. M. & Shand, P.) 391–403 (Wiley, 2008).

  • Mack, T. J., Chornack, M. P. & Taher, M. R. Groundwater-level tendencies and implications for sustainable water use within the Kabul Basin, Afghanistan. Environ. Syst. Decis. 33, 457–467 (2013).

    Article 

    Google Scholar
     

  • Mack, T. J. Evaluation of ground-water sources within the Seacoast area of New Hampshire. U.S. Geological Survey Scientific Investigations Report 2008-5222. https://pubs.usgs.gov/sir/2008/5222/pdf/sir2008-5222.pdf (2008).

  • Maclear, L. G. A. The hydrogeology of the Uitenhage Artesian Basin as regards to the Desk Mountain Group Aquifer. Water SA 27, 499–506 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Macphail, M. Hill, B., Carpenter, R. & McKellar, J. Cenozoic oil-shale deposits in southeastern-central Queensland: palynostratigraphic age determinations and correlations for the Biloela Formation (Biloela Basin) in GSQ Monto 5. Queensland Geological Report 2014/01. https://geoscience.information.qld.gov.au/report/cr089721 (2014).

  • Madani, Okay. & Mariño, M. A. System dynamics evaluation for managing Iran’s Zayandeh-Rud river basin. Water Resour. Manag. 23, 2163–2187 (2009).

    Article 

    Google Scholar
     

  • Madison, J. P., LaFave, J. I., Patton, T. W., Smith, L. N. & Olson, J. N. Groundwater sources of the Center Yellowstone River space: Treasure and Yellowstone counties, Montana Half A*—descriptive overview and water-quality information. Montana Bureau of Mines and Geology, Montana Floor-Water Evaluation Atlas 3-A. http://mbmg.mtech.edu/pdf-publications/gwaa_3.pdf (2014).

  • Magarey, P. & Deane, D. Willochra Basin Groundwater Monitoring Standing Report 2005. Division of Water, Land and Biodiversity Conservation Report No. 2005/39. https://www.waterconnect.sa.gov.au/Content material/Publications/DEW/ki_dwlbc_2005_39.pdf (2005).

  • Magesh, N. S., Chandrasekar, N. & Soundranayagam, J. P. Delineation of groundwater potential zones in Theni district, Tamil Nadu, utilizing distant sensing, GIS and MIF methods. Geosci. Entrance. 3, 189–196 (2012).

    Article 

    Google Scholar
     

  • Mahlknecht, J. et al. Hydrochemical controls on arsenic contamination and its well being dangers within the Comarca Lagunera area (Mexico): implications of the scientific proof for public well being coverage. Sci. Whole Environ. 857, 159347 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahlknecht, J., Merchán, D., Rosner, M., Meixner, A. & Ledesma-Ruiz, R. Assessing seawater intrusion in an arid coastal aquifer below excessive anthropogenic affect utilizing main constituents, Sr and B isotopes in groundwater. Sci. Whole Environ. 587, 282–295 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mahmoodlu, M., Heshmatpour, A., Jandaghi, N., Zare, A. & Mehrabi, H. Hydrogeochemical evaluation of groundwater high quality: Seyedan-Farooq aquifer, Fars Province. Iran. J. Ecohydrol. 5, 1241–1253 (2018).


    Google Scholar
     

  • Mahmoudzadeh, E., Rezaian, S. & Ahmadi, A. Evaluation of Meymeh Plain aquifer vulnerability in Esfahan utilizing comparative technique AVI, GODS, DRASTIC. J. Environ. Stud. 39, 45–60 (2013).


    Google Scholar
     

  • Majola, Okay., Xu, Y. & Kanyerere, T. Overview: Evaluation of local weather change impacts on groundwater-dependent ecosystems in transboundary aquifer settings as regards to the Tuli-Karoo transboundary aquifer. Ecohydrol. Hydrobiol. 22, 126–140 (2022).

    Article 

    Google Scholar
     

  • Malakootian, M. & Nozari, M. GIS-based DRASTIC and composite DRASTIC indices for assessing groundwater vulnerability within the Baghin aquifer, Kerman, Iran. Nat. Hazards Earth Syst. Sci. 20, 2351–2363 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Malekmohammadi, B. & Jahanishakib, F. Vulnerability evaluation of wetland panorama ecosystem companies utilizing driver-pressure-state-impact-response (DPSIR) mannequin. Ecol. Indic. 82, 293–303 (2017).

    Article 

    Google Scholar
     

  • Malenda, H. F. & Penn, C. A. Groundwater ranges within the Denver Basin bedrock aquifers of Douglas County, Colorado, 2011–19. U.S. Geological Survey Scientific Investigations Report 2020–5076. https://pubs.usgs.gov/sir/2020/5076/sir20205076.pdf (2020).

  • Mali, N., Koroša, A. & Urbanc, J. Prevalence of pesticides in Krško-Brežice polje aquifer. Geologija 64, 267–288 (2023).

    Article 

    Google Scholar
     

  • Mallory, M. J. Hydrogeology of the Southeastern Coastal Plain aquifer system in components of japanese Mississippi and western Alabama. U.S. Geological Survey Skilled Paper 1410-G. https://pubs.usgs.gov/pp/1410g/report.pdf (1993).

  • Manjusree, T. M., Joseph, S. & Thomas, J. Hydrogeochemistry and groundwater high quality within the coastal sandy clay aquifers of Alappuzha district, Kerala. J. Geol. Soc. India 74, 459–468 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Manning, A. H. Floor-water temperature, noble fuel, and carbon isotope information from the Española Basin, New Mexico. U.S. Geological Survey Scientific Investigations Report 2008–5200. https://pubs.usgs.gov/sir/2008/5200/pdf/SIR08-5200.pdf (2009).

  • Manning, A. H. & Solomon, D. Okay. An built-in environmental tracer strategy to characterizing groundwater circulation in a mountain block. Water Resour. Res. 41, W12412 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Manz, R. P. Groundwater circulate modeling of the Ojai basin utilizing the USGS 3 dimensional MODFLOW mannequin. MSc thesis, California State Univ. (1988).

  • Marchildon, M. & Kassenaar, D. Analyzing low affect improvement methods utilizing steady totally distributed coupled groundwater and floor water fashions. J. Water Manag. Mannequin., R246-17. https://doi.org/10.14796/JWMM.R246-17 (2013).

  • Maroufpoor, S., Fakheri-Fard, A. & Shiri, J. Research of the spatial distribution of groundwater high quality utilizing tender computing and geostatistical fashions. ISH J. Hydraul. Eng. 25, 232–238 (2019).

    Article 

    Google Scholar
     

  • Marques, E. A. et al. Evaluation of groundwater and river stage fluctuations and their relationship with water use and local weather variation results on Alto Grande watershed, Northeastern Brazil. J. S. Am. Earth Sci. 103, 102723 (2020).

    Article 

    Google Scholar
     

  • Marques, R. M. Bacia do Parnaíba: Estado Atual do Conhecimento e Possibilidades Para a Produção de Gás Pure. Thesis, Universidade Federal do Pará (2011).

  • Marshall, J. S. The geomorphology and physiographic provinces of Central America. Central Am. Geol. Resour. Hazards 1, 75–121 (2007).


    Google Scholar
     

  • Marshall, S. Okay., Fontaine, Okay., Kilgour, P. L. & Lewis, S. J. Regional hydrogeological characterisation of the Maryborough Basin, Queensland. Technical report for the Nationwide Collaboration Framework Regional Hydrogeology Mission. Geoscience Australia Report 2015/14. https://wetlandinfo.des.qld.gov.au/sources/static/pdf/ecology/catchment-stories/gss/marshall-2015.pdf (2015).

  • Marston, T. M. Water sources of Parowan Valley, Iron County, Utah. U.S. Geological Survey Scientific Investigations Report 2017-5033. https://doi.org/10.3133/sir20175033 (2017).

  • Martin, P. Improvement and calibration of a two-dimensional digital mannequin for the evaluation of the ground-water circulate system within the San Antonio Creek Valley, Santa Barbara County, California. U.S. Geological Survey Water-Sources Investigations Report 84-4340. https://pubs.usgs.gov/wri/1984/4340/report.pdf (1984).

  • Martínez, R. et al. The EU GeoCapacity undertaking—saline aquifers storage capability in group south nations. Power Procedia 1, 2733–2740 (2009).

    Article 

    Google Scholar
     

  • Martínez-Bastida, J. J., Araúzo, M. & Valladolid, M. Caracterización hidroquímica de las aguas superficiales y subterráneas en la cuenca del Oja-Tirón. Procesos de contaminación. Limnetica 26, 219–232 (2007).

    Article 

    Google Scholar
     

  • Martínez-Granados, D. & Calatrava, J. The function of desalinisation to handle aquifer overdraft in SE Spain. J. Environ. Manag. 144, 247–257 (2014).

    Article 

    Google Scholar
     

  • Martínez-Retama, S., Flores, C. & Castillo-Gurrola, J. Saline intrusion in Guaymas Valley, Mexico from time-domain electromagnetic soundings. Geofís. Int. 46, 175–198 (2007).

    ADS 

    Google Scholar
     

  • Martínez-Santos, P., Castaño-Castaño, S. & Hernández-Espriú, A. Revisiting groundwater overdraft based mostly on the expertise of the Mancha Occidental Aquifer, Spain. Hydrol. J. 26, 1083–1097 (2018).

    ADS 

    Google Scholar
     

  • Marvin, R. F., Shafer, G. H. & Dale, O. C. Groundwater sources of Victoria and Calhoun Counties, Texas. https://www.twdb.texas.gov/publications/experiences/bulletins/doc/Bull.htm/B6202.asp (1962).

  • Mashburn, S. L., Ryter, D. W., Neel, C. R., Smith, S. J. & Correll, J. S. Hydrogeology and simulation of ground-water circulate within the Central Oklahoma (Garber-Wellington) Aquifer, Oklahoma, 1987 to 2009, and simulation of avail-able water in storage, 2010–2059. U.S. Geological Survey Scientific Investigations Report 2013-5219. https://pubs.usgs.gov/sir/2013/5219/pdf/sir20135219_v2.0.pdf (2014).

  • Masoumi, M., Gharaie, M. H. M. & Ahmadzadeh, H. Evaluation of groundwater high quality for the irrigation of melon farms: a comparability between two arable plains in northeastern Iran. Environ. Earth Sci. 78, 214 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Masterson, J. P. et al. Evaluation of groundwater availability within the Northern Atlantic Coastal Plain aquifer system from Lengthy Island, New York, to North Carolina. U.S. Geological Survey Skilled Paper 1829. https://pubs.usgs.gov/pp/1829/pp1829.pdf (2016).

  • Masterson, J. P. et al. Hydrogeology and hydrologic circumstances of the Northern Atlantic Coastal Plain aquifer system from Lengthy Island, New York, to North Carolina. U.S. Geological Survey Scientific Investigations Report 2013-5133. https://doi.org/10.3133/sir20135133 (2013).

  • Masterson, J. P. & Walter, D. A. Hydrogeology and groundwater sources of the coastal aquifers of southeastern Massachusetts. U.S. Geological Survey Round 1338. https://pubs.usgs.gov/circ/circ1338/pdf/circularpercent202009-1338_508.pdf (2009).

  • Mathany, T. M., Wright, M. T., Beuttel, B. S. & Belitz, Okay. Groundwater-quality information within the Borrego Valley, Central Desert, and low-use basins of the Mojave and Sonoran Deserts research unit, 2008–2010: outcomes from the California GAMA Program. U.S. Geological Survey Information Collection 659. https://pubs.usgs.gov/ds/659/pdf/ds659.pdf (2012).

  • Mather, B. et al. Constraining the response of continental-scale groundwater circulate to local weather change. Sci. Rep. 12, 4539 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matlock, W. G., Davis, P. R. & Roth, R. L. Groundwater in Little Chino Valley, Arizona: Tucson, College of Arizona, Faculty of Agriculture, Agricultural Experiment Station, Technical Bulletin 201. https://repository.arizona.edu/bitstream/deal with/10150/602177/TB178.pdf?sequence=1 (1973).

  • Maurer, D. Okay. Geologic framework and hydrogeology of the center Carson River Basin, Eagle, Dayton, and Churchill Valleys, West-Central Nevada. U.S. Geological Survey Scientific Investigations Report 2011-5055. https://pubs.usgs.gov/sir/2011/5055/pdf/sir20115055.pdf (2011).

  • Maurer, D. Okay. & Thodal, C. E. Amount and chemical high quality of recharge, and up to date water budgets, for the basin-fill aquifer in Eagle Valley, western Nevada. U.S. Geological Survey Water-Sources Investigations Report 99-4289. https://pubs.usgs.gov/wri/1999/4289/report.pdf (2000).

  • Maxey, G. B. & Eakin, T. E. Floor water in White River Valley, White Pine, Nye, and Lincoln Counties, Nevada. U.S. Division of the Inside Water Sources Bulletin No. 8. https://www.nrc.gov/docs/ML0331/ML033140348.pdf (1949).

  • Mayer, A., Nguyen, B. T. & Banton, O. Utilizing radon-222 to check coastal groundwater/surface-water interplay within the Crau coastal aquifer (southeastern France). Hydrol. J. 24, 1775–1789 (2016).

    ADS 

    Google Scholar
     

  • Mayo, A. L., Henderson, R. M., Tingey, D. & Webber, W. Chemical evolution of shallow playa groundwater in response to post-pluvial isostatic rebound, Honey Lake Basin, California–Nevada, USA. Hydrol. J. 18, 725–747 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • McGuire, V. L., Johnson, M. R., Schieffer, J. S., Stanton, J. S., Sebree, S. Okay. & Varstraeten, I. M. Water in storage and approaches to groundwater administration, Excessive Plains Aquifer, 2000. U.S. Geological Survey Round 1243. https://pubs.usgs.gov/circ/2003/circ1243/pdf/C1243.pdf (2003).

  • McLean, J. S. Saline ground-water sources of the Tularosa basin, New Mexico. U.S. Geological Survey OSW Report No. 561. https://pubs.usgs.gov/unnumbered/70139928/report.pdf (1970).

  • Meinzer, O. E. Artesian water for irrigation in Little Bitterroot Valley, Montana. Water Provide Paper 400. https://pubs.usgs.gov/wsp/0400b/report.pdf (1916).

  • Mejía-González, M. Á., González-Hita, L., Espinoza-Ayala, J. & González-Verdugo, J. A. Determinación de las aportaciones de agua dulce a las lagunas costeras Chacahua y Salina Grande, Oaxaca, México, por medio de isótopos ambientales. Tecnol. Cienc. Agua 3, 53–64 (2012).


    Google Scholar
     

  • Mendez, G. O. & Christensen, A. H. Regional water desk (1996) and water-level adjustments within the Mojave River, the Morongo, and the Fort Irwin ground-water basins, San Bernardino County, Calif., 38 pp. Accessed April 27, 2022 through https://pubs.usgs.gov/wri/1997/4160/report.pdf (1997).

  • Mendez-Estrella, R., Romo-Leon, J. R., Castellanos, A. E., Gandarilla-Aizpuro, F. J. & Hartfield, Okay. Analyzing panorama tendencies on agriculture, launched unique grasslands and riparian ecosystems in arid areas of Mexico. Distant Sens. 8, 664 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Meng, A. & Harsh, J. F. Hydrogeologic framework of the Virginia coastal plain. U.S. Geological Survey Skilled Paper 1404-C. https://pubs.usgs.gov/pp/pp1404-C/pdf/pp_1404-c.pdf (1988).

  • Meng, S. et al. Spatiotemporal evolution traits research on the precipitation infiltration recharge over the previous 50 years within the North China Plain. J. Earth Sci. 26, 416–424 (2015).

    Article 

    Google Scholar
     

  • Meredith, Okay. T. et al. Evolution of dissolved inorganic carbon in groundwater recharged by cyclones and groundwater age estimations utilizing the 14C statistical strategy. Geochim. Cosmochim. Acta 220, 483–498 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meredith, Okay., Cendón, D. I., Pigois, J. P., Hollins, S. & Jacobsen, G. Utilizing 14C and 3H to delineate a recharge ‘window’ into the Perth Basin aquifers, North Gnangara groundwater system, Western Australia. Sci. Whole Environ. 414, 456–469 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Miall, A. D. Geoscience of local weather and power 13. The environmental hydrogeology of the Oil Sands, Decrease Athabasca Space, Alberta. Geosci. Can. 40, 215–233 (2013).

    Article 

    Google Scholar
     

  • Michael, H. A. & Voss, C. I. Controls on groundwater circulate within the Bengal Basin of India and Bangladesh: regional modeling evaluation. Hydrol. J. 17, 1561–1577 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Mihaylova, B. et al. in Transboundary Aquifers: Challenges and the Method Ahead Matter 3 Paper 11, 110–107 (UNESCO, 2022).

  • Miller, J. A. Floor Water Atlas of america: Section 10, Illinois, Indiana, Kentucky, Ohio, Tennessee. U.S. Geological Survey Hydrologic Investigations Atlas 730-Okay. https://pubs.usgs.gov/ha/730k/report.pdf (1995).

  • Miller, J. A. Floor Water Atlas of america: Section 6, Alabama, Florida, Georgia, South Carolina. U.S. Geological Survey Hydrologic Investigations Atlas 730-G. https://pubs.usgs.gov/ha/730g/report.pdf (1990).

  • Miller, J. A. & Appel, C. L. Floor Water Atlas of america: Section 3, Kansas, Missouri, Nebraska. U.S. Geological Survey Hydrologic Investigations Atlas 730-D. https://pubs.usgs.gov/ha/730d/report.pdf (1997).

  • Minderhoud, P. S. J. et al. Impacts of 25 years of groundwater extraction on subsidence within the Mekong delta, Vietnam. Environ. Res. Lett. 12, 064006 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ministere de l’Ecologie, du Developpement Sturdy et de l’Energie. Hydrologie souterraine synthèse. BRGM report. https://professionnels.ofb.fr/websites/default/recordsdata/pdf/RE_Explore2070_Eaux_Sout_Synthese.pdf (2012).

  • Ministerio de Medio Ambiente y Recursos Naturales. Informe de monitoreo de los Acuíferos de Zapotitán, Santa Ana y San Miguel. Ministerio de Medio Ambiente y Recursos Naturales report. http://rcc.marn.gob.sv/bitstream/deal with/123456789/127/Acuiferospercent20percent20StaAnapercent2cpercent20SnMiguelpercent20ypercent20Zapotitpercentc3percenta1n_2016.pdf?sequence=1&isAllowed=y (2016).

  • Ministerio de Medio Ambiente y Recursos Naturales. Mapa Hidrogeológico de El Salvador. https://www.sica.int/documentos/mapa-hidrogeologico-de-el-salvador_1_128021.html (2021).

  • Ministerio de Medio Ambiente y Recursos Naturales. Mapa Hidrogeológico de El Salvador. http://srt.snet.gob.sv/sihi/public/atlas (2023).

  • Ministerio de Medio Ambiente y Recursos Naturales. Objetivos de Calidad de Agua, Ríos, Lagos y Embalses ZP1. http://srt.snet.gob.sv/sihi/public/atlas (2023).

  • Ministerio de Medio Ambiente y Recursos Naturales Plan Nacional de Gestión Integrada del Recurso Hídrico de El Salvador, con énfasis en zonas prioritarias. Report by the Ministerio de Medio Ambiente y Recursos Naturales (MARN). http://rcc.marn.gob.sv/bitstream/deal with/123456789/259/Resumenpercent20Ejecutivopercent20PNGRHpercent202017.compressed.pdf?sequence=1&isAllowed=y (2017).

  • Minnesota Division of Pure Sources Minnesota Groundwater Provinces 2021. Minnesota Division of Pure Sources map, 2 pp. Accessed April 14, 2021 from https://recordsdata.dnr.state.mn.us/waters/groundwater_section/mapping/provinces/2021-provinces.pdf (2021).

  • Mirzaei, R. & Sakizadeh, M. Comparability of interpolation strategies for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran. Environ. Sci. Pollut. Res. 23, 2758–2769 (2016).

    Article 

    Google Scholar
     

  • Mirzavand, M., Ghasemieh, H., Sadatinejad, S. J. & Bagheri, R. Delineating the supply and mechanism of groundwater salinization in essential declining aquifer utilizing multi-chemo-isotopes approaches. J. Hydrol. 586, 124877 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Miyakoshi, A., Uchida, Y., Sakura, Y. & Hayashi, T. Distribution of subsurface temperature within the Kanto Plain, Japan; estimation of regional groundwater circulate system and floor warming. Phys. Chem. Earth A/B/C 28, 467–475 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Miyazaki, S., Hasegawa, S., Kayaki, T. & Osamu, W. in Hydro-environments of Alluvial Followers in Japan, Monograph, thirty sixth IAH Congress (Worldwide Affiliation for Hydro-Setting Engineering and Analysis, 2008).

  • Tabari, M. M. R. & Kabiri Samani, M. Groundwater high quality evaluation utilizing entropy weighted osculating worth and set pair evaluation strategies (case research, SARAYAN plain). J. Environ. Sci. Technol. 21, 99–112 (2019).


    Google Scholar
     

  • Mohammadi, Z., Zare, M. & Sharifzade, B. Delineation of groundwater salinization in a coastal aquifer, Bousheher, South of Iran. Environ. Earth Sci. 67, 1473–1484 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mohammadzadeh-Habili, J. et al. Influences of pure salinity sources and human actions on the Shapour River salinity through the current streamflow discount interval. Environ. Monit. Assess. 193, 696 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohammadzadeh-Habili, J., Soltani, M. & Khalili, D. Impact of reservoir geometry on performance of recharge dams influenced by sedimentation: case research of the Meymand recharge dam. Arab. J. Geosci. 14, 487 (2021).

    Article 

    Google Scholar
     

  • Mohammed, N. et al. Isotopic and geochemical identification of major groundwater provide sources to an alluvial aquifer, the Allier River valley (France). J. Hydrol. 508, 181–196 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mohebbi Tafreshi, G. & Mohebbi Tafreshi, A. Statistical approaches and hydrochemical modeling of groundwater within the Golpayegan Plain aquifer, Iran. Mannequin. Earth Syst. Environ. 6, 2391–2404 (2020).

    Article 

    Google Scholar
     

  • Mojarrad, M., Rakhshandehrou, G. R., Monadi, R. & Ghorbani, M. in Proc. 2nd Worldwide Convention of Water Sources and Wetlands (eds Gâştescu, P. & Marszelewski, W.) 336–343 (UNESCO, 2014).

  • Mojiri, H. & Halabian, A. Analysis of the results of temporal variables of temperature, precipitation and water harvesting on groundwater sources in Mehrgerd basin of Semirom. J. Watershed Manag. Res. 10, 238–249 (2019).

    Article 

    Google Scholar
     

  • Mokhtar, A. & Aram, S. Systemic insights into agricultural groundwater administration: case of Firuzabad Plain, Iran. Water Coverage 19, 867–885 (2017).

    Article 

    Google Scholar
     

  • Mokrik, R., Mazeika, J., Baublyt, A. & Martma, T. The groundwater age within the Center-Higher Devonian aquifer system, Lithuania. Hydrol. J. 17, 871–889 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Mora, A., Mahlknecht, J., Rosales-Lagarde, L. & Hernández-Antonio, A. Evaluation of main ions and hint components in groundwater provided to the Monterrey metropolitan space, Nuevo León, Mexico. Environ. Monit. Assess. 189, 394 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morales, P., Casar, I., Cortes, A., Arizabalo, R. D. & Aravena, R. Environmental isotopes and geochemical investigation of groundwater within the north-western a part of the State of Morelos, Mexico (IAEA-TECDOC-502). Worldwide Atomic Power Company (IAEA). https://inis.iaea.org/assortment/NCLCollectionStore/_Public/21/031/21031083.pdf?r=1 (1989).

  • Morales-Casique, E. Mixing of groundwaters with unsure end-members: case research within the Tepalcingo-Axochiapan aquifer, Mexico. Hydrol. J. 20, 605–613 (2012).

    ADS 

    Google Scholar
     

  • Moratilla, F. E. & Pérez, C. M. O. Aplicación de la tomografía remota térmica a la investigación de la hidrogeología y dinámica de flujos de las aguas subterráneas de la cuenca del río Júcar. Disaster y medio ambiente:¿ Oportunidad o retroceso? https://www.mapa.gob.es/ministerio/pags/biblioteca/revistas/pdf_AMpercent5CAMBIENTA_101.pdf (2012).

  • Morell, I. Acuíferos detríticos costeros. Hidrogeol. Aguas Subterrán. 1, 31–44 (2003).


    Google Scholar
     

  • Morikawa, N. et al. Relationship between geological construction and helium isotopes in deep groundwater from the Osaka Basin: software to deep groundwater hydrology. Geochem. J. 42, 61–74 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Morín, P. M. Aplicación de un modelo numérico para simular el flujo hidráulico del acuífero de Ojos Negros. MSc thesis, Ensenada Middle for Scientific Analysis and Larger Schooling (2013).

  • Morrison, R. B. Floor-water sources of the Large Sandy Valley, Mohave County, Arizona. U.S. Geological Survey Report. https://azmemory.azlibrary.gov/nodes/view/91763?key phrases= (1940).

  • Moslemi, H. Evaluation of groundwater disaster in arid and semiarid areas (case research: Jaghin and Tokahor Plain). Irrig. Sci. Eng. 42, 31–46 (2019).


    Google Scholar
     

  • Motagh, M. et al. Land subsidence in Iran brought on by widespread water reservoir overexploitation. Geophys. Res. Lett. 35, L16403 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Motevalli, A., Pourghasemi, H. R., Hashemi, H. & Gholami, V. in Spatial Modeling in GIS and R for Earth and Environmental Sciences (eds Pourghasemi, H. R. & Gokceoglu, C.) 547–571 (Elsevier, 2019).

  • Moura, A. & Velho, J. L. in Recursos Geologicos de Portugal Ch. 57, 523–536 (Palimage, 2012).

  • Mower, R. W. & Feltis, R. D. Floor-water hydrology of the Sevier Desert, Utah. U.S. Geological Survey Water-Provide Paper 1854. https://pubs.usgs.gov/wsp/1854/report.pdf (1968).

  • Mthembu, P. P., Elumalai, V., Brindha, Okay. & Li, P. Hydrogeochemical processes and hint steel contamination in groundwater: affect on human well being within the Maputaland coastal aquifer, South Africa. Expos. Well being 12, 403–426 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Muir, Okay. S. Floor-water reconnaissance of the Santa Barbara-Montecito space, Santa Barbara County, California. U.S. Geological Survey Water-Provide Paper 1859-A. https://pubs.usgs.gov/wsp/1859a/report.pdf (1968).

  • Muir, M. A. Okay. & Martinez, A. A. Preliminary evaluation of water sources together with local weather concerns for the Los Cabos and La Paz municipalities within the State of Baja California Sur, Mexico. Worldwide Water Affiliation Water, Power and Local weather Convention. https://arctic.ucalgary.ca/websites/default/recordsdata/April18-IWA-FinalConferenceVersion-MAKMuir.pdf (2018).

  • Mukherjee, A., Fryar, A. E. & Howell, P. D. Regional hydrostratigraphy and groundwater circulate modeling within the arsenic-affected areas of the western Bengal basin, West Bengal, India. Hydrol. J. 15, 1397–1418 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Mukherjee, A. et al. Revisiting the stratigraphy of the Mesoproterozoic Chhattisgarh Supergroup, Bastar craton, India based mostly on subsurface lithoinformation. J. Earth Syst. Sci. 123, 617–632 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mukherjee, A. et al. Groundwater methods of the Indian sub-continent. J. Hydrol. Reg. Stud. 4, 1–14 (2015).

    Article 

    Google Scholar
     

  • Municipio de El Llano. Atlas de Riesgos Naturales del Municipio de El Llano 2012. Report quantity 201010PP047745. http://rmgir.proyectomesoamerica.org/PDFMunicipales/2012/01010_El_Llano.pdf (2012).

  • Munro-Stasiuk, M. J. & Manahan, T. Okay. Investigating historical Maya agricultural adaptation via floor penetrating radar (GPR) evaluation of karst terrain, Northern Yucatán, Mexico. Acta Carsologica 39, 123–136 (2010).

    Article 

    Google Scholar
     

  • Murray-Darling Basin Fee. Murray-Darling Basin groundwater: a useful resource for the longer term. Murray-Darling Basin Fee. https://catalogue.nla.gov.au/catalog/3024769 (1999).

  • Musy, S. et al. In-situ sampling for krypton-85 groundwater courting. J. Hydrol. 11, 100075 (2021).

    CAS 

    Google Scholar
     

  • Naderi, M. Evaluation of water safety below local weather change for the big watershed of Dorudzan Dam in southern Iran. Hydrol. J. 28, 1553–1574 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Naghibi, S. A., Vafakhah, M., Hashemi, H., Pradhan, B. & Alavi, S. J. Groundwater augmentation via the positioning collection of floodwater spreading utilizing a knowledge mining strategy (case research: Mashhad Plain, Iran). Water 10, 1405 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Nakai, I. et al. High quality of the groundwater in Toyooka Basin. J. Groundwat. Hydrol. 34, 1–12 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Nandakumaran, P. & Balakrishnan, Okay. Groundwater high quality variations in Precambrian laborious rock aquifers: a case research from Kerala, India. Appl. Water Sci. 10, 2 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Naranjo, R. C., Welborn, T. L. & Rosen, M. R. The distribution and modeling of nitrate transport within the Carson Valley alluvial aquifer, Douglas County, Nevada. U.S. Geological Survey Scientific Investigations Report 2013–5136. https://pubs.usgs.gov/sir/2013/5136/pdf/sir2013-5136.pdf (2013).

  • Naranjo-Fernández, N., Guardiola-Albert, C., Aguilera, H., Serrano-Hidalgo, C. & Montero-González, E. Clustering groundwater degree time sequence of the exploited Almonte-Marismas aquifer in Southwest Spain. Water 12, 1063 (2020).

    Article 

    Google Scholar
     

  • Narayan, Okay. A., Schleeberger, C. & Bristow, Okay. L. Modelling seawater intrusion within the Burdekin Delta irrigation space, North Queensland, Australia. Agric. Water Manag. 89, 217–228 (2007).

    Article 

    Google Scholar
     

  • Nasiri, A., Shirocova, V. A. & Zareie, S. Zoning of groundwater high quality for plain Garmsar in Iran. Water Resour. 46, 624–629 (2019).

    Article 

    Google Scholar
     

  • Nasiri, M., Hamidi, M. & Kardan Moghaddam, H. Investigation of groundwater quantitative and qualitative variations tendencies (case research: Sari-Neka aquifer). J. Aquifer Qanat 2, 109–122 (2019).


    Google Scholar
     

  • Nath, B., Jean, J. S., Lee, M. Okay., Yang, H. J. & Liu, C. C. Geochemistry of excessive arsenic groundwater in Chia-Nan plain, Southwestern Taiwan: potential sources and reactive transport of arsenic. J. Contam. Hydrol. 99, 85–96 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nativ, R. & Weisbrod, N. Administration of a multilayered coastal aquifer—an Israeli case research. Water Resour. Manag. 8, 297–311 (1994).

    Article 

    Google Scholar
     

  • Navarro, B. J. B. Estado y evolución de los procesos de intrusión marina en la unidad hidrogeológica 08.38 plana de Gandía-Denia (Valencia-Alicante, España). Tecnología De La Intrusión de Agua De Mar en Acuíferos Costeros: Países Mediterráneos. http://aguas.igme.es/igme/publica/tiac-01/Areapercent20V-17.pdf (2003).

  • Nazari, S. & Ahmadi, A. Non-cooperative stability assessments of groundwater sources administration based mostly on the tradeoff between the economic system and the surroundings. J. Hydrol. 578, 124075 (2019).

    Article 

    Google Scholar
     

  • Nazari, S., Ahmadi, A., Rad, S. Okay. & Ebrahimi, B. Utility of non-cooperative dynamic sport idea for groundwater battle decision. J. Environ. Manag. 270, 110889 (2020).

    Article 

    Google Scholar
     

  • Negarash, H., Shafiei, N. & Doraninejad, M. S. Hydro-geomorphology impact of Nurabad Mamasani plain aquifer on the area’s water sources utilizing GIS. Hydrogeomorphology 2, 55–73 (2016).


    Google Scholar
     

  • Neilson-Welch, L. & Allen, D. Groundwater and hydrogeological circumstances within the Okanagan Basin, British Columbia: a state-of-the-basin report. Remaining report ready for Goal 1 of the Part 2 Groundwater Provide and Demand Mission. https://www.obwb.ca/fileadmin/docs/water_supply_demand/water_supply_demand_final_report.pdf (2007).

  • Nel, L. The Geology of the Springbok Flats. PhD dissertation, Univ. Free State (2012).

  • Nell, J. P. & Van Huyssteen, C. W. Geology and groundwater areas to quantify major salinity, sodicity and alkalinity in South African soils. S. Afr. J. Plant Soil 31, 127–135 (2014).

    Article 

    Google Scholar
     

  • Nematollahi, M. J., Ebrahimi, P. & Ebrahimi, M. Evaluating hydrogeochemical processes regulating groundwater high quality in an unconfined aquifer. Environ. Course of. 3, 1021–1043 (2016).

    Article 

    Google Scholar
     

  • Nematollahi, M. J., Ebrahimi, P., Razmara, M. & Ghasemi, A. Hydrogeochemical investigations and groundwater high quality evaluation of Torbat-Zaveh plain, Khorasan Razavi, Iran. Environ. Monit. Assess. 188, 2 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Newcomb, R. C. Geology and ground-water sources of the Walla Walla River Basin, Washington-Oregon. Washington Division of Water Sources Water Provide Bulletin No. 21. https://apps.ecology.wa.gov/publications/paperwork/wsb21.pdf (1965).

  • Nguyen, T. T. et al. Clustering spatio–seasonal hydrogeochemical information utilizing self-organizing maps for groundwater high quality evaluation within the Purple River Delta, Vietnam. J. Hydrol. 522, 661–673 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nickerson, E. L. & Myers, R. G. Geohydrology of the Mesilla ground-water basin, Dona Ana County, New Mexico, and El Paso County, Texas. U.S. Geological Survey Water-Sources Investigations Report 92-4156. https://pubs.usgs.gov/wri/1992/4156/report.pdf (1993).

  • Nilzad, M., Moradi, H. & Jalili, Okay. Estimation of temporal and spatial variations of the extent of the aquifers in Bisotun plain of Kermanshah province with geostatistical strategies. Irrig. Water Eng. 8, 79–92 (2018).


    Google Scholar
     

  • Nishikawa, T. (ed.) Santa Barbara and Foothill groundwater basins geohydrology and optimum water sources administration—developed utilizing density dependent solute transport and optimization fashions. U.S. Geological Survey Scientific Investigations Report 2018-5059. https://pubs.usgs.gov/sir/2018/5059/sir20185059_.pdf (2018).

  • Nitcheva, O. Hydrology fashions strategy to estimation of the groundwater recharge: case research within the Bulgarian Danube watershed. Environ. Earth Sci. 77, 464 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Nolan, S., Tan, P.-L. & Cox, M. Collaborative water planning: groundwater visualisation software information. Charles Darwin College. http://www.nespnorthern.edu.au/wp-content/uploads/2016/02/GVT_Griffith-Uni_13-Might-2010-with-corrections1.pdf (2010).

  • Noma, Y., Kino, Y. & Goto, H. Floor water within the Kuzuryu River Basin, Fukui Prefecture (in Japanese). Bull. Geol. Surv. Jpn. 20, 767–782 (2023).


    Google Scholar
     

  • Norouzi, H. & Moghaddam, A. A. Groundwater high quality evaluation utilizing random forest technique based mostly on groundwater high quality indices (case research: Miandoab plain aquifer, NW of Iran). Arab. J. Geosci. 13, 912 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nosrati, Okay. & Van Den Eeckhaut, M. Evaluation of groundwater high quality utilizing multivariate statistical methods in Hashtgerd Plain, Iran. Environ. Earth Sci. 65, 331–344 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • NSW Division of Planning and Setting. Lachlan alluvium groundwater useful resource description. NSW Division of Planning and Setting report. https://water.dpie.nsw.gov.au/__data/belongings/pdf_file/0010/175969/Lachlan-alluvium-appendice-a-water-resource-description.pdf (2019).

  • Nuñez Codoseo, J. Evaluación de la disponibilidad de agua del Sector Acuífero Chacabuco-Polpaico: Factibilidad de entrega de nuevos derechos de aprovechamiento de agua provisionales. Thesis, Universidad de Chile (2017).

  • Nyambe, I. A. Tectonic and climatic controls on sedimentation throughout deposition of the Sinakumbe Group and Karoo Supergroup, within the mid-Zambezi Valley Basin, southern Zambia. J. Afr. Earth. Sci. 28, 443–463 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nystrom, E. A. Floor-water high quality within the Lake Champlain Basin, New York, 2004. U.S. Geological Survey Open-File Report 2006-1088. https://pubs.usgs.gov/of/2006/1088/pdf/Nystrom.OFR2006-1088.pdf (2006).

  • Ojeda Olivares, E. A. et al. Local weather change, land use/land cowl change, and inhabitants progress as drivers of groundwater depletion within the central valleys, Oaxaca, Mexico. Distant Sens. 11, 1290 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Olcott, P. G. Floor Water Atlas of america: Section 12, Connecticut, Maine, Massachusetts, New Hampshire, New York, Rhode Island, Vermont. U.S. Geological Survey Hydrologic Investigations Atlas 730-M. https://pubs.usgs.gov/ha/730m/report.pdf (1995).

  • Olcott, P. G. Groundwater Atlas of america: Section 9, Iowa, Michigan, Minnesota, Wisconsin. U.S. Geological Survey Hydrologic Investigations Atlas 730-J. https://pubs.usgs.gov/ha/730j/report.pdf (1992).

  • Olmsted, F. H., Loeltz, O. J. & Irelan, B. Geohydrology of the Yuma space, Arizona and California. U.S. Geological Survey Skilled Paper 486-H. https://pubs.usgs.gov/pp/0486h/report.pdf (1973).

  • Ong’or, B. T. & Lengthy-Cang, S. Groundwater overdraft and the affect of synthetic recharge on groundwater high quality in a cone of melancholy, Jining, China. Water Int. 34, 468–483 (2009).

    Article 

    Google Scholar
     

  • Opluštil, S. The impact of paleotopography, tectonics and sediment provide on high quality of coal seams in continental basins of central and western Bohemia (Westphalian), Czech Republic. Int. J. Coal Geol. 64, 173–203 (2005).

    Article 

    Google Scholar
     

  • Opluštil, S., Lojka, R. & Pšenika, J. Late Variscan continental basins in western Bohemia: tectono-sedimentary, local weather and biotic archives. Schriftreihe Dtsch. Ges. Geowiss. 82, 179–201 (2013).


    Google Scholar
     

  • Orban, P. et al. Regional transport modelling for nitrate pattern evaluation and forecasting in a chalk aquifer. J. Contam. Hydrol. 118, 79–93 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Oregon Water Sources Division, Properly Report Question. https://apps.wrd.state.or.us/apps/gw/well_log/Default.aspx (2021).

  • Orehova, T. V. Groundwater within the watershed of Tundja River, Bulgaria. http://router.geology.bas.bg/~orehova/pdf/2006_Groundwaterpercent20Tundja.pdf (2006).

  • Oroji, B. Groundwater vulnerability evaluation with utilizing GIS in Hamadan–Bahar plain, Iran. Appl. Water Sci. 9, 196 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Oroji, B. & Karimi, Z. F. Utility of DRASTIC mannequin and GIS for analysis of aquifer vulnerability: case research of Asadabad, Hamadan (western Iran). Geosci. J. 22, 843–855 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ortiz Letechipia, J. et al. Aqueous arsenic speciation with hydrogeochemical modeling and correlation with fluorine in groundwater in a semiarid area of Mexico. Water 14, 519 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Osborn, N. I. Replace of the hydrologic survey of the Tillman Terrace Groundwater Basin, southwestern Oklahoma. Oklahoma Water Sources Board Technical Report GW2002-1. https://www.owrb.okay.gov/research/experiences/reports_pdf/tillman_update.pdf (2002).

  • Ossa-Valencia, J. & Betancur-Vargas, T. Hydrogeochemical characterization and identification of a system of regional circulate. Case research: the aquifer on the Gulf of Urabá, Colombia. Rev. Fac. Ing. Univ. Antioquia 86, 9–18 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Othman, A. & Abotalib, A. Z. Land subsidence triggered by groundwater withdrawal below hyper-arid circumstances: case research from Central Saudi Arabia. Environ. Earth Sci. 78, 243 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Othman, A. et al. Use of geophysical and distant sensing information for evaluation of aquifer depletion and associated land deformation. Surv. Geophys. 39, 543–566 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Owen, D. D., Raiber, M. & Cox, M. E. Relationships between main ions in coal seam fuel groundwaters: examples from the Surat and Clarence-Moreton basins. Int. J. Coal Geol. 137, 77–91 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Oyarzún, R. et al. Multi-method evaluation of connectivity between floor water and shallow groundwater: the case of Limarí River basin, north-central Chile. Hydrol. J. 22, 1857–1873 (2014).

    ADS 

    Google Scholar
     

  • Oyarzún, R. et al. A hydrogeochemistry and isotopic strategy for the evaluation of floor water–groundwater dynamics in an arid basin: the Limarí watershed, North-Central Chile. Environ. Earth Sci. 73, 39–55 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Pacheco-Martínez, J. et al. Land subsidence and floor failure related to groundwater exploitation within the Aguascalientes Valley, México. Eng. Geol. 164, 172–186 (2013).

    Article 

    Google Scholar
     

  • Padilla, I., Irizarry, C. & Steele, Okay. Historic contamination of groundwater sources within the north coast karst aquifers of Puerto Rico. Rev. Dimens. 3, 7–12 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panahi, M. R., Mousavi, S. M. & Rahimzadegan, M. Delineation of groundwater potential zones utilizing distant sensing, GIS, and AHP approach in Tehran–Karaj plain, Iran. Environ. Earth Sci. 76, 792 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Mother or father, M., Rivard, C., Lefebvre, R., Provider, M.-A. & Séjourné, S. Hydrogeological methods of the Montérégie Est area, southern Québec: Fieldtrip Guidebook, GeoMontreal 2013 Convention. Geological Survey of Canada Open File 7605 (2014).

  • Parizi, E., Hosseini, S. M., Ataie-Ashtiani, B. & Simmons, C. T. Normalized distinction vegetation index because the dominant predicting issue of groundwater recharge in phreatic aquifers: case research throughout Iran. Sci. Rep. 10, 17473 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parks, Okay. & Andriashek, L. Preliminary investigation of potential, pure hydraulic pathways between the Scollard and Paskapoo formations in Alberta: implications for coalbed methane manufacturing. ERCB/AGS Open File Report 2009-16. https://static.ags.aer.ca/recordsdata/doc/OFR/OFR_2009_16.pdf (2009).

  • ParsiMehr, M., Shayesteh, Okay. & Godini, Okay. The modeling and prediction of the standard of the groundwater sources in Tuyserkan plain utilizing the optimized synthetic neural community. J. Adv. Environ. Well being Res. 8, 107–118 (2020).


    Google Scholar
     

  • Parvaiz, A. et al. Salinity enrichment, sources and its contribution to elevated groundwater arsenic and fluoride ranges in Rachna Doab, Punjab Pakistan: Steady isotope (δ2H and δ18O) strategy as an proof. Environ. Pollut. 268, 115710 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paschke, S. S. Groundwater availability of the Denver Basin aquifer system, Colorado. U.S. Geological Survey Skilled Paper 1770. https://pubs.usgs.gov/pp/1770/contents/pp1770.pdf (2011).

  • Pastén-Zapata, E., Ledesma-Ruiz, R., Harter, T., Ramírez, A. I. & Mahlknecht, J. Evaluation of sources and destiny of nitrate in shallow groundwater of an agricultural space by utilizing a multi-tracer strategy. Sci. Whole Environ. 470, 855–864 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Patenaude, M., Baudron, P., Labelle, L. & Masse-Dufresne, J. Evaluating bank-filtration incidence within the Province of Quebec (Canada) with a GIS strategy. Water 12, 662 (2020).

    Article 

    Google Scholar
     

  • Pathak, D. Hydrogeology of shallow and deep aquifers in Nara Basin, West Japan. J. Nepal Geol. Soc. 43, 267–275 (2011).

    Article 

    Google Scholar
     

  • Paul, B., Raper, P., Simons, J., Stainer, G. & George, R. Weaber Plain aquifer take a look at outcomes. Authorities of Western Australia, Division of Agriculture and Meals Useful resource Administration Technical Report 367. https://library.dpird.wa.gov.au/cgi/viewcontent.cgi?article=1362&context=rmtr (2011).

  • Payne, B. R., Quijano, L. & Latorre, D. C. Environmental isotopes in a research of the origin of salinity of groundwater within the Mexicali Valley. J. Hydrol. 41, 201–215 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pazand, Okay. Geochemical and statistical analysis of groundwater in Razan basin, Western Iran. Carbonates Evaporites 31, 179–185 (2016).

    Article 

    Google Scholar
     

  • Pazand, Okay. & Javanshir, A. R. Geochemistry and water high quality evaluation of groundwater round Mohammad Abad Space, Bam District, SE Iran. Water Qual. Expos. Well being 6, 225–231 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pazand, Okay. & Javanshir, A. R. Hydrogeochemistry and arsenic contamination of groundwater within the Rayen space, southeastern Iran. Environ. Earth Sci. 70, 2633–2644 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pazand, Okay., Khosravi, D., Ghaderi, M. R. & Rezvanianzadeh, M. R. Identification of the hydrogeochemical processes and evaluation of groundwater in a semi-arid area utilizing main ion chemistry: a case research of Ardestan basin in Central Iran. Groundw. Maintain. Dev. 6, 245–254 (2018).

    Article 

    Google Scholar
     

  • Peeters, L., Batelaan, O. & Dassargues, A. Identification and quantification of sources of main solutes in a sandy, phreatic aquifer in Central Belgium via ionic ratios and geochemical mass-balance modelling. https://orbi.uliege.be/bitstream/2268/3587/1/publi159-2007.pdf (2007).

  • Peña, L. C. B. et al. Identificación de áreas potenciales de recarga hídrica en el acuífero Cuauhtémoc (Chihuahua), mediante una evaluación espacial multi criterio. Estudios territoriales en México: Percepción remota y sistemas de información espacial, 339–362 (2016).

  • Peng, T. R. et al. Utilizing oxygen, hydrogen, and tritium isotopes to evaluate pond water’s contribution to groundwater and native precipitation within the pediment tableland areas of northwestern Taiwan. J. Hydrol. 450, 105–116 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Perry, E., Velaquez-Oliman, V. & Socki, R. A. in The Lowland Maya Space: Three Millennia on the Human-Wildland Interface (eds Fedick, S., Allen, M., Jim?nez-Osornio, J. & Gomez-Pompa, A.) 115–138 (CRC, 2003).

  • Peterson, S. M., Traylor, J. P. & Guira, M. Groundwater availability of the Northern Excessive Plains aquifer in Colorado, Kansas, Nebraska, South Dakota, and Wyoming. U.S. Geological Survey Skilled Paper 1864. https://pubs.usgs.gov/pp/1864/pp1864.pdf (2020).

  • Pétré, M. A., Rivera, A., Lefebvre, R., Hendry, M. J. & Folnagy, A. J. A unified hydrogeological conceptual mannequin of the Milk River transboundary aquifer, traversing Alberta (Canada) and Montana (USA). Hydrol. J. 24, 1847–1871 (2016).

    ADS 

    Google Scholar
     

  • Pettifer, G. Bundaberg groundwater investigation, Australia – a case for the advantages of in depth use of geophysics in groundwater investigations. https://library.seg.org/doi/pdf/10.4133/1.2923407 (2004).

  • Phiancharoen, C. Interpretation of the Chemical Analyses of the Floor Water of the Khorat Plateau, Thailand. MSc thesis, Univ. Arizona (1962).

  • Phien-wej, N., Giao, P. H. & Nutalaya, P. Land subsidence in Bangkok, Thailand. Eng. Geol. 82, 187–201 (2006).

    Article 

    Google Scholar
     

  • Phillips, F. M., Bentley, H. W., Davis, S. N., Elmore, D. & Swanick, G. B. Chlorine 36 courting of very previous groundwater: 2. Milk River aquifer, Alberta, Canada. Water Resour. Res. 22, 2003–2016 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pimentel, E. T. & Hamza, V. M. Use of geothermal strategies in outlining deep groundwater circulate methods in Paleozoic inside basins of Brazil. Hydrol. J. 22, 107–128 (2014).

    ADS 

    Google Scholar
     

  • Pinault, J. L., Doerfliger, N., Ladouche, B. & Bakalowicz, M. Characterizing a coastal karst aquifer utilizing an inverse modeling strategy: the saline springs of Thau, southern France. Water Resour. Res. 40, W08501 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Pino, E. et al. Elements affecting depletion and air pollution by marine intrusion within the La Yarada’s coastal aquifer, Tacna., Peru. Tecnol. Cienc. Agua 10, 177–213 (2019).

    Article 

    Google Scholar
     

  • Pino-Vargas, E., Guevara-Pérez, E. & Avendaño-Jihuallanga, C. Historic evolution of the hydrogeological conceptualization and using Caplina aquifer on the northern fringe of the Atacama Desert. Rev. Ing. UC 28, 378–391 (2021).


    Google Scholar
     

  • Pisani, J. Regional groundwater degree evaluation pre-summer 2020. Employees Report back to the Regional District of Nanaimo. https://rdn-pub.escribemeetings.com/filestream.ashx?DocumentId=13450 (2020).

  • Piyapong, J., Thidarat, B., Jaruwan, C., Siriphan, N. & Passanan, A. Enhancing residents’ sense of non-public duty and threat notion for selling public participation in sustainable groundwater useful resource administration in Rayong Groundwater Basin, Thailand. Groundw. Maintain. Dev. 9, 100252 (2019).

    Article 

    Google Scholar
     

  • Plume, R. W. Hydrogeologic framework and incidence and motion of floor water within the higher Humboldt River basin, northeastern Nevada. U.S. Geological Survey Scientific Investigations Report 2009-5014. https://pubs.usgs.gov/sir/2009/5014/pdf/sir20095014.pdf (2009).

  • Ponce, V. M., Pandey, R. P. & Kumar, S. Groundwater recharge by channel infiltration in El Barbon basin, Baja California, Mexico. J. Hydrol. 214, 1–7 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Poulsen, D. Culverden Basin hydrogeology. Setting Canterbury Regional Council Report No. R12/96. https://www.ecan.govt.nz/doc/obtain?uri=1723844 (2012).

  • Pourkhosravani, M. Qualitative evaluation of Orzooiyeh plain groundwater sources utilizing GIS methods. Environ. Well being Eng. Manag. J. 3, 209–215 (2016).

    Article 

    Google Scholar
     

  • Powell, W. J. Floor-water sources of the San Luis Valley, Colorado. U.S. Geological Survey Water-Provide Paper 1379. https://pubs.usgs.gov/wsp/1379/report.pdf (1958).

  • Pratt, T. R. et al. Hydrogeology of the Northwest Florida Water Administration District. Northwest Florida Water Administration District, Water Sources Particular Report, 96-4. (1996).

  • Barraclough, J. T. & Marsh, O. T. Aquifers and high quality of floor water alongside the Gulf Coast of western Florida. U.S. Geological Survey Report of Investigations No. 29. https://ufdcimages.uflib.ufl.edu/UF/00/00/12/16/00001/UF00001216.pdf (1962).

  • Worth, D. Floor water in Utah’s densely populated Wasatch Entrance space—the problem and the alternatives. U.S. Geological Survey Water-Provide Paper 2232. https://pubs.usgs.gov/wsp/2232/report.pdf (1985).

  • Priestley, S. C. et al. Use of U-isotopes in exploring groundwater circulate and inter-aquifer leakage within the south-western margin of the Nice Artesian Basin and Arckaringa Basin, central Australia. Appl. Geochem. 98, 331–344 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Priestley, S. C. et al. A 35 ka report of groundwater recharge in south-west Australia utilizing secure water isotopes. Sci. Whole Environ. 717, 135105 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Priju, C., Sushanth, C. M. & Balan, V. Delineation of freshwater zones within the shallow coastal aquifers of Ernakulam-Chettuva area, Central Kerala, India utilizing electrical resistivity strategies. https://belongings.researchsquare.com/recordsdata/rs-369371/v1/7e2408f9-0dd0-49c2-ab11-1a4457d52b58.pdf (2021).

  • Prior, J. C., Boekhoff, J. L., Howes, M. R., Libra, R. D. & VanDorpe, P. E. Iowa’s groundwater fundamentals. A geological information to the incidence, use, & vulnerability of Iowa’s aquifers. Iowa Division of Pure Sources report. https://s-iihr34.iihr.uiowa.edu/publications/uploads/2014-08-24_08-08-21_es-06.pdf (2003).

  • Pulido-Bosch, A. Rules of Karst Hydrogeology: Conceptual Fashions, Time Collection Evaluation, Hydrogeochemistry and Groundwater Exploitation (Springer, 2020).

  • Pulido-Bosch, A. et al. Groundwater issues within the karstic aquifers of the Dobrich area, northeastern Bulgaria. Hydrol. Sci. J. 44, 913–927 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Pulido-Bosch, A., Morell, I. & Andreu, J. M. Hydrogeochemical results of groundwater mining of the Sierra de Crevillente Aquifer (Alicante, Spain). Environ. Geol. 26, 232–239 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pulido-Velazquez, D., Ahlfeld, D., Andreu, J. & Sahuquillo, A. Decreasing the computational value of unconfined groundwater circulate in conjunctive-use fashions at basin scale assuming linear behaviour: the case of Adra-Campo de Dalías. J. Hydrol. 353, 159–174 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Putthividhya, A. & Laonamsai, J. Hydrological evaluation utilizing secure isotope fingerprinting approach within the Higher Chao Phraya river basin. Lowl. Technol. Int. 19, 27–40 (2017).


    Google Scholar
     

  • Qasemi, M. et al. Well being threat evaluation of nitrate publicity in groundwater of rural areas of Gonabad and Bajestan, Iran. Environ. Earth Sci. 77, 551 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Qasemi, M., Afsharnia, M., Zarei, A., Farhang, M. & Allahdadi, M. Non-carcinogenic threat evaluation to human well being because of consumption of fluoride within the groundwater in rural areas of Gonabad and Bajestan, Iran: a case research. Hum. Ecol. Danger Assess. 25, 1222–1233 (2018).

    Article 

    Google Scholar
     

  • Qasim, A., Singh, S. P. & Chandrashekhar, A. Okay. Geochemical and isotope tracing of groundwater salinity within the coastal Gujarat alluvial plain, India. J. Contam. Hydrol. 248, 104000 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian, Okay., Li, J., Xie, X. & Wang, Y. Natural and inorganic colloids impacting whole iodine habits in groundwater from the Datong Basin, China. Sci. Whole Environ. 601, 380–390 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Qin, D. et al. Assessing affect of irrigation water on groundwater recharge and high quality in arid surroundings utilizing CFCs, tritium and secure isotopes, within the Zhangye Basin, Northwest China. J. Hydrol. 405, 194–208 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Quezadas, J. P., Heilweil, V. M., Silva, A. C., Araguas, L. & Ortega, M. D. R. S. A multi-tracer strategy to delineate groundwater dynamics within the Rio Actopan Basin, Veracruz State, Mexico. Hydrol. J. 24, 1953–1966 (2016).


    Google Scholar
     

  • Radell, M. J. Three-dimensional Groundwater Circulate Mannequin Use and Utility: Bishop Basin, Owens Valley, California. MSc thesis, Univ. Arizona. (1989).

  • Radell, M. J., Lewis, M. E. & Watts, Okay. R. Hydrogeologic traits of the alluvial aquifer and adjoining deposits of the Fountain Creek valley, El Paso County, Colorado. U.S. Geological Survey Water-Sources Investigations Report 94-4129. https://pubs.er.usgs.gov/publication/wri944129 (1994).

  • Radfar, M., Van Camp, M. & Walraevens, Okay. Drought impacts on long-term hydrodynamic habits of groundwater within the tertiary–quaternary aquifer system of Shahrekord Plain, Iran. Environ. Earth Sci. 70, 927–942 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Rahbar, A. et al. A hydrogeochemical evaluation of groundwater utilizing hierarchical clustering evaluation and fuzzy C-mean clustering strategies in Arak plain, Iran. Environ. Earth Sci. 79, 342 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rahimi, S., Roodposhti, M. S. & Abbaspour, R. A. Utilizing mixed AHP–genetic algorithm in synthetic groundwater recharge website collection of Gareh Bygone Plain, Iran. Environ. Earth Sci. 72, 1979–1992 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rahmati, O., Samani, A. N., Mahmoodi, N. & Mahdavi, M. Evaluation of the contribution of N-fertilizers to nitrate air pollution of groundwater in western Iran (case research: Ghorveh–Dehgelan Aquifer). Water Qual. Expos. Well being 7, 143–151 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ramirez, E., Robles, E., Sainz, M., Ayala, R. & Campoy, E. Microbiological high quality of the Zacatepec aquifer, Morelos, Mexico. Rev. Int. Contam. Ambient. 25, 247–255 (2009).

    CAS 

    Google Scholar
     

  • Randich, P. G. & Kuzniar, R. L. Floor-water sources of Towner County, North Dakota. North Dakota State Water Fee report. http://swc.state.nd.us/info_edu/reports_and_publications/county_groundwater_studies/pdfs/Towner_Part_III.pdf (1984).

  • Rangel-Medina, M., Monreal, R., Minjarez, I., de la Cruz, L. & Oroz, L. The saline intrusion within the Costa de Hermosillo aquifer in Sonora, México; a problem to revive. http://www.swim-site.nl/pdf/swim18/swim18_059.pdf (2004).

  • Ransley, T. R. et al. Hydrogeological atlas of the Nice Artesian Basin. Geoscience Australia. http://www.ga.gov.au/scientific-topics/water/groundwater/gab (2015).

  • Ransley, T. R. & Smerdon, B. D. Hydrostratigraphy, hydrogeology and system conceptualisation of the Nice Artesian Basin. A technical report back to the Australian Authorities from the CSIRO Nice Artesian Basin Water Useful resource Evaluation. https://publications.csiro.au/rpr/obtain?pid=csiro:EP132693&dsid=DS5 (2012).

  • Raper, G. P. et al. Groundwater pattern evaluation and salinity threat evaluation for the south-west agricultural area of Western Australia, 2007–12. Authorities of Western Australia, Division of Agriculture and Meals Useful resource Administration Technical Report 388. https://library.dpird.wa.gov.au/cgi/viewcontent.cgi?article=1372&context=rmtr (2014).

  • Raper, P., George, R. & Schoknecht, N. Preliminary soil and groundwater evaluation of the Mantinea Improvement space, East Kimberley, Western Australia. Western Australian Agriculture Authority useful resource administration technical report 389. https://www.agric.wa.gov.au/websites/gateway/recordsdata/Preliminarypercent20soilpercent20andpercent20groundwaterpercent20assessmentpercent20ofpercent20thepercent20Mantineapercent20Developmentpercent20areapercent2Cpercent20Eastpercent20Kimberleypercent20-%20RMTRpercent20389percent20percent28PDFpercent204.2MBpercent29.pdf (2015).

  • Rathfelder, Okay. & Gregory, L. Groundwater high quality evaluation and proposed targets for the Osoyoos Aquifer. Water Science Collection: WSS2019-06. https://a100.gov.bc.ca/pub/acat/paperwork/r57603/1_1571784531661_1784376098.pdf (2019).

  • Rathore, V. S., Nathawat, M. S. & Ray, P. C. Affect of neotectonic exercise on groundwater salinity and playa improvement within the Mendha river catchment, western India. Int. J. Distant Sens. 29, 3975–3986 (2008).

    Article 

    Google Scholar
     

  • Rattray, G. Geochemical evolution of groundwater within the Mud Lake space, Japanese Idaho, USA. Environ. Earth Sci. 73, 8251–8269 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ravenscroft, P., McArthur, J. M. & Rahman, M. S. Figuring out a number of deep aquifers within the Bengal Basin: implications for useful resource administration. Hydrol. Course of. 32, 3615–3632 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Reichard, E. G. et al. Geohydrology, geochemistry, and ground-water simulation-optimization of the Central and West Coast Basins, Los Angeles County, California. U.S. Geological Survey Water-Sources Investigations Report 03-4065. https://pubs.usgs.gov/wri/wrir034065/wrir034065.pdf (2003).

  • Reidel, S. P., Spane, F. A. & Johnson, V. G. Pure fuel storage in basalt aquifers of the Columbia basin, Pacific Northwest USA: a information to website characterization. Pacific Northwest Nationwide Lab (PNNL) Report No. PNNL-13962. https://www.pnnl.gov/major/publications/exterior/technical_reports/PNNL-13962.pdf (2002).

  • Render, F. W. Aquifer capability investigations 1980–1986. Manitoba Water Sources Hydrotechnical Companies report. https://www.gov.mb.ca/water/pubs/water-science-management/groundwater/publication/1987_render_aquifer_capacity_investigations_1980_1986.pdf (1987).

  • Render, F. W. Water provide capability of the Assiniboine Delta Aquifer. Can. Water Resour. J. 13, 16–34 (1988).

    Article 

    Google Scholar
     

  • Renken, R. A. et al. Geology and hydrogeology of the Caribbean islands aquifer system of the commonwealth of Puerto Rico and the US Virgin Islands. U.S. Geological Survey Skilled Paper 1419. https://pubs.usgs.gov/pp/pp1419/pdf/BOOK.PDF (2002).

  • Renken, R. A. Groundwater Atlas of america: Section 5, Arkansas, Louisiana, Mississippi. U.S. Geological Survey Hydrologic Investigations Atlas 730-F. https://pubs.usgs.gov/ha/730f/report.pdf (1998).

  • Retter, A. et al. Utility of the D-A-(C) index as a easy software for microbial-ecological characterization and evaluation of groundwater ecosystems—a case research of the Mur River Valley, Austria. Oesterr. Wasser- Abfallwirtsch. 73, 455–467 (2021).

    Article 

    Google Scholar
     

  • Reza, A. S. et al. A comparative research on arsenic and humic substances in alluvial aquifers of Bengal delta plain (NW Bangladesh), Chianan plain (SW Taiwan) and Lanyang plain (NE Taiwan): implication of arsenic mobilization mechanisms. Environ. Geochem. Well being 33, 235–258 (2011).

    Article 

    Google Scholar
     

  • Rezaei, A. & Hassani, H. Hydrogeochemistry research and groundwater high quality evaluation within the north of Isfahan, Iran. Environ. Geochem. Well being 40, 583–608 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rezaei, A. et al. Analysis of groundwater high quality and heavy steel air pollution indices in Bazman basin, southeastern Iran. Groundw. Maintain. Dev. 9, 100245 (2019).

    Article 

    Google Scholar
     

  • Rezaei, A., Hassani, H., Tziritis, E., Mousavi, S. B. F. & Jabbari, N. Hydrochemical characterization and analysis of groundwater high quality in Dalgan basin, SE Iran. Groundw. Maintain. Dev. 10, 100353 (2020).

    Article 

    Google Scholar
     

  • Ribeiro, L. et al. Evaluating piezometric tendencies utilizing the Mann-Kendall take a look at on the alluvial aquifers of the Elqui River basin, Chile. Hydrol. Sci. J. 60, 1840–1852 (2015).

    Article 

    Google Scholar
     

  • Richardson, G. B. Underground water in Sanpete and Central Sevier Valleys, Utah. U.S. Geological Survey Water-Provide and Irrigation Paper No. 199. https://pubs.usgs.gov/wsp/0199/report.pdf (1907).

  • Rinehart, A., Koning, D. & Timmons, S. Hydrogeology of the San Agustin Plains. Presentation on the 62nd New Mexico Water Convention. https://geoinfo.nmt.edu/geoscience/analysis/paperwork/37/D2_07_Alex_Rinehart.pdf (2017).

  • Rivard, C., Michaud, Y., Lefebvre, R., Deblonde, C. & Rivera, A. Characterization of a regional aquifer system within the Maritimes Basin, Japanese Canada. Water Resour. Manag. 22, 1649–1675 (2008).

    Article 

    Google Scholar
     

  • Rivera-Hernández, J. R., Inexperienced-Ruiz, C., Pelling-Salazar, L. & Trejo-Alduenda, A. Hydrochemistry of the Mocorito river coastal aquifer, Sinaloa, Mexico: water high quality evaluation for human consumption and agriculture suitability. Hidrobiológica 27, 103–113 (2017).

    Article 

    Google Scholar
     

  • Roark, D. M., Holmes, W. F. & Shlosar, H. Okay. Hydrology of Heber and Spherical Valleys, Wasatch County, Utah, with emphasis on simulation of ground-water circulate in Heber Valley. U.S. Geological Survey Technical Publication No. 101. https://waterrights.utah.gov/docSys/v920/y920/y9200009.pdf (1991).

  • Robertson, A. J. et al. Mesilla/Conejos-Médanos Basin: US-Mexico transboundary water sources. Water 14, 134 (2022).

    Article 

    Google Scholar
     

  • Robins, N. S. & Ball, D. F. The Dumfries Basin aquifer. British Geological Survey Analysis Report RR/06/02. http://nora.nerc.ac.uk/id/eprint/3685/1/RR06002.pdf (2006).

  • Robles, E., Ramirez, E., de Guadalupe Sáinz, M., Duran, A. & González, M. E. Bacteriological and physicochemical research on the water of an aquifer in Mexico. Univers. J. Environ. Res. Technol. 3, 158–172 (2013).


    Google Scholar
     

  • Rodgers, Okay. D. Water-level tendencies and potentiometric surfaces within the Nacatoch Aquifer in northeastern and southwestern Arkansas and within the Tokio Aquifer in southwestern Arkansas, 2014–15. U.S. Geological Survey Scientific Investigations Report 2017-5090. https://pubs.usgs.gov/sir/2017/5090/sir20175090.pdf (2017).

  • Rodrigo-Naharro, J., Aracil, E. & del Villar, L. P. Geophysical investigations within the Gañuelas-Mazarrón Tertiary basin (SE Spain): a pure analogue of a geological CO2 storage affected by anthropogenic leakages. J. Appl. Geophys. 155, 187–198 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Rodríguez, L., Vives, L. & Gomez, A. Conceptual and numerical modeling strategy of the Guarani Aquifer System. Hydrol. Earth Syst. Sci. 17, 295–314 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Rodriguez-Rodriguez, M., Martos-Rosillo, S. & Pedrera, A. Hydrogeological behaviour of the Fuente-de-Piedra playa lake and tectonic origin of its basin (Malaga, southern Spain). J. Hydrol. 543, 462–476 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Rojas, R. et al. Groundwater useful resource evaluation and conceptualization within the Pilbara Area, Western Australia. Earth Syst. Environ. 2, 345–365 (2018).

    Article 

    Google Scholar
     

  • Roques, C., Bour, O., Aquilina, L. & Dewandel, B. Excessive-yielding aquifers in crystalline basement: insights concerning the function of fault zones, exemplified by Armorican Massif, France. Hydrol. J. 24, 2157–2170 (2016).

    ADS 

    Google Scholar
     

  • Rosário de Jesus, M. Groundwater safety for public water-supply in Portugal. https://unece.org/fileadmin/DAM/env/water/conferences/groundwater01/portugal.pdf (2001).

  • Rose, T. P., Davisson, M. L., Smith, D. Okay. & Kenneally, J. M. Isotope hydrology investigation of regional groundwater circulate in central Nevada. Hydrologic Sources Administration Program and Underground Take a look at Space Operable Unit FY 1997 Progress Report, Ch. 6. https://core.ac.uk/obtain/pdf/204554577.pdf#web page=62 (1998).

  • Rose, T. P., Davisson, M. L., Hudson, G. B. & Varian, A. R. Environmental isotope investigation of groundwater circulate within the Honey Lake Basin, California and Nevada. Division of Power Report UCRL-ID-127978 ON: DE98051049. https://www.osti.gov/servlets/purl/620597 (1997).

  • Rostami, A. A., Isazadeh, M., Shahabi, M. & Nozari, H. Analysis of geostatistical methods and their hybrid in modelling of groundwater high quality index within the Marand Plain in Iran. Environ. Sci. Pollut. Res. 26, 34993–35009 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rostkier‐Edelstein, D. et al. In the direction of a excessive‐decision climatography of seasonal precipitation over Israel. Int. J. Climatol. 34, 1964–1979 (2014).

    Article 

    Google Scholar
     

  • Rotzoll, Okay., Gingerich, S. B., Jenson, J. W. & El-Kadi, A. I. Estimating hydraulic properties from tidal attenuation within the Northern Guam Lens Aquifer, territory of Guam, USA. Hydrol. J. 21, 643–654 (2013).

    ADS 

    Google Scholar
     

  • Rouillard, J. & Maréchal, J.-C. in Sustainable Groundwater Administration: A Comparative Evaluation of French and Australian Insurance policies and Implications to Different Nations (eds Rinaudo, J.-D., Holley, C., Barnett, S. & Montginoul, M.) 17–45 (Springer, 2020).

  • Rupérez-Moreno, C., Pérez-Sánchez, J., Senent-Aparicio, J. & del Pilar Flores-Asenjo, M. The financial worth of conjoint native administration in water sources: outcomes from a contingent valuation within the Boquerón aquifer (Albacete, SE Spain). Sci. Whole Environ. 532, 255–264 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rupérez-Moreno, C. et al. Sustainability of irrigated agriculture with overexploited aquifers: the case of Segura basin (SE, Spain). Agric. Water Manag. 182, 67–76 (2017).

    Article 

    Google Scholar
     

  • Rushton, Okay. R. & Rao, S. R. Groundwater circulate via a Miliolite limestone aquifer. Hydrol. Sci. J. 33, 449–464 (1988).

    Article 

    Google Scholar
     

  • Rutulis, M. Aquifer maps of southern Manitoba. Manitoba Water Sources Department map. https://www.gov.mb.ca/water/pubs/maps/water/1986_rutulis_bedrock_aquifers.pdf (1986).

  • Ruybal, C. J., Hogue, T. S. & McCray, J. E. Evaluation of groundwater depletion and implications for administration within the Denver Basin Aquifer System. J. Am. Water Resour. Assoc. 55, 1130–1148 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ryder, P. Floor Water Atlas of america: Section 4, Oklahoma, Texas. U.S. Geological Survey Hydrologic Investigations Atlas 730-E. https://pubs.usgs.gov/ha/730e/report.pdf (1996).

  • Saadatmand, A., Noorollahi, Y., Yousefi, H. & Mohammadi, A. Investigation, modeling and evaluation of qualitative parameters of groundwater sources in Kurdistan’s Kamyaran plain. Iran. J. Ecohydrol. 8, 357–367 (2021).


    Google Scholar
     

  • Sabzevari, Y., Nasrolahi, A. H. & Yonesi, H. A. Investigation of temporal-spatial variations of groundwater sources high quality in Borujerd-Dorood Plain. Irrig. Water Eng. 11, 150–167 (2020).


    Google Scholar
     

  • Sadeghfam, S., Hassanzadeh, Y., Nadiri, A. A. & Khatibi, R. Mapping groundwater potential area utilizing disaster fuzzy membership capabilities and Jenks optimization technique: a case research of Maragheh-Bonab plain, Iran. Environ. Earth Sci. 75, 545 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Sadid, N. Floor-groundwater interplay within the Kabul area basin. Afghanistan Analysis and Analysis Unit Report. https://reliefweb.int/websites/reliefweb.int/recordsdata/sources/2005-E-Floor-groundwater-interaction-in-the-Kabul-region-basin.pdf (2020).

  • Saeidi, H., Lashkaripour, G. & Ghafoori, M. Analysis of land subsidence in Kashmar-Bardaskan plain, NE Iran. Iran. J. Earth Sci. 12, 280–291 (2020).


    Google Scholar
     

  • Saffari, A., Jan Ahmadi, M. & Raeati Shavazi, M. Website choice for appropriate flood spreadingand synthetic feeding via hybrid, AHP-Fuzzy Mannequin Case Research: (Bushkan Plain, Bushehr Province). Hydrogeomorphology 1, 81–97 (2015).


    Google Scholar
     

  • Saffi, M. H. Nationwide alarming on groundwater pure storage depletion and water high quality deterioration of Kabul Metropolis and fast response to the ingesting water crises. Scientific Investigation Report in Afghanistan, DACAAR report (2019).

  • Saha, D. & Gor, N. A prolific aquifer system is in peril in arid Kachchh area of India. Groundw. Maintain. Dev. 11, 100394 (2020).

    Article 

    Google Scholar
     

  • Saha, D. & Ray, R. Okay. in Groundwater Improvement and Administration (ed. Sikdar, P. Okay.) 19–42 (Springer, 2019).

  • Saha, D., Shekhar, S., Ali, S., Vittala, S. S. & Raju, N. J. Latest hydrogeological analysis in India. Proc. Indian Natl Sci. Acad. 82, 787–803 (2016).

    Article 

    Google Scholar
     

  • Sahoo, S., Dhar, A., Kar, A. & Chakraborty, D. Index-based groundwater vulnerability mapping utilizing quantitative parameters. Environ. Earth Sci. 75, 522 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Sahu, J. Okay., Das, P. P., Sahoo, H. Okay., Mohapatra, P. P. & Sahoo, S. Geospatial evaluation and hydrogeochemical investigation of part of southern Mahanadi delta, Odisha, India. Himal. Geol. 39, 92–100 (2018).


    Google Scholar
     

  • Sahu, S., Gogoi, U. & Nayak, N. C. Patterns of groundwater chemistry: implications of groundwater circulate and the relation with groundwater fluoride contamination within the phreatic aquifer of Odisha, India. Arab. J. Geosci. 13, 1272 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sajil Kumar, P. J. & James, E. J. Identification of hydrogeochemical processes within the Coimbatore district, Tamil Nadu, India. Hydrol. Sci. J. 61, 719–731 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sakai, A. Land subsidence because of seasonal pumping of groundwater in Saga Plain, Japan. Lowl. Technol. Int. 3, 25–40 (2001).


    Google Scholar
     

  • Salehabadi, G. The impact of groundwater in plain settlement in Jovin. Sci. Res. Q. Geogr. Information 22, 30–34 (2021).


    Google Scholar
     

  • Salehi, H. & Zeinivand, H. Analysis and mapping of groundwater high quality for rigation and ingesting functions in Kuhdasht area, Iran. Environ. Resour. Res. 4, 75–89 (2016).


    Google Scholar
     

  • Salemi, H. R. et al. Water administration for sustainable irrigated agriculture within the Zayandeh Rud Basin, Esfahan Province, Iran. Report by Iranian Agricultural Engineering Analysis Institute, Esfahan Agricultural Analysis Middle and the Worldwide Water Administration Institute, Analysis Report #1 (2000).

  • Salinas Valley Basin Built-in Sustainability Plan. https://svbgsa.org/wp-content/uploads/2019/03/Valley-Broad-Built-in-Sustainability-Plan-optimized.pdf (2020).

  • Saltel, M. et al. Paleoclimate variations and affect on groundwater recharge in multi-layer aquifer methods utilizing a multi-tracer strategy (northern Aquitaine basin, France). Hydrol. J. 27, 1439–1457 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Samantaray, S., Rath, A. & Swain, P. C. Conjunctive use of groundwater and floor water in part of Hirakud Command Space. Int. J. Eng. Technol. 9, 3002–3010 (2017).

    Article 

    Google Scholar
     

  • Samper, J. et al. Evaluació de los impactos del cambio climático e los acuíferos de la pla a de la galera y del aluvial de Tortosa. Estudios en la Zona no Saturada del Suelo. Vol. X, 359–364. http://zonanosaturada.com/zns11/publications/p359.pdf (2011).

  • Sanchez, R. & Eckstein, G. Groundwater administration within the borderlands of Mexico and Texas: the great thing about the unknown, the negligence of the current, and the way in which ahead. Water Resour. Res. 56, e2019WR026068 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Sanchez, R., Lopez, V. & Eckstein, G. Figuring out and characterizing transboundary aquifers alongside the Mexico–US border: an preliminary evaluation. J. Hydrol. 535, 101–119 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Sandberg, G. W. Floor-water sources of chosen basins in southwestern Utah. U.S. Geological Survey Open Technical Publication 13. https://waterrights.utah.gov/docSys/v920/w920/w920008c.pdf (1966).

  • Sandiford, M., Lawrie, Okay. & Brodie, R. S. Hydrogeological implications of energetic tectonics within the Nice Artesian Basin, Australia. Hydrol. J. 28, 57–73 (2020).


    Google Scholar
     

  • Sanford, W. E. & Buapeng, S. Evaluation of a groundwater circulate mannequin of the Bangkok Basin, Thailand, utilizing carbon-14-based ages and paleohydrology. Hydrol. J. 4, 26–40 (1996).

    ADS 

    Google Scholar
     

  • Sanford, W. E., Pope, J. P., Selnick, D. L. & Stumvoll, R. F. Simulation of groundwater circulate within the shallow aquifer system of the Delmarva Peninsula, Maryland and Delaware. U.S. Geological Survey Open-File Report 2012–1140. https://pubs.usgs.gov/of/2012/1140/pdf/OFR_2012-1140.pdf (2012).

  • Santha, N., Sangkajan, S. & Saenton, S. Arsenic contamination in groundwater and potential well being threat in Western Lampang Basin, Northern Thailand. Water 14, 465 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Santoni, S. et al. Strontium isotopes as tracers of water-rocks interactions, mixing processes and residence time indicator of groundwater throughout the granite-carbonate coastal aquifer of Bonifacio (Corsica, France). Sci. Whole Environ. 573, 233–246 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanz, D. et al. Modeling aquifer–river interactions below the affect of groundwater abstraction within the Mancha Oriental System (SE Spain). Hydrol. J. 19, 475–487 (2011).

    ADS 

    Google Scholar
     

  • Savoca, M. E., Sadorf, E. M. & Akers, Okay. Okay. Floor-water high quality within the japanese a part of the Silurian-Devonian and Higher Carbonate Aquifers within the japanese Iowa basins, Iowa and Minnesota, 1996. U.S. Geological Survey Water-Sources Investigations Report 98-4224. https://pubs.usgs.gov/wri/1998/wri984224/pdf/wri98-4224.pdf (1999).

  • Schoewe, W. H. The geography of Kansas: Half II. Bodily geography. Trans. Kans. Acad. Sci. 52, 261–333 (1949).

    Article 

    Google Scholar
     

  • Schrader, G. P. Unconsolidated aquifer methods of Ripley County, Indiana. Indiana Division of Pure Sources, Division of Water report. https://www.in.gov/dnr/water/recordsdata/ripley_unconsolidated_text.pdf (2004).

  • Schult, J. Herbicides, pesticides and vitamins within the Tindall aquifer, Katherine Area. Northern Territory Authorities, Division of Land Useful resource Administration report. https://landresources.nt.gov.au/__data/belongings/pdf_file/0019/282160/GWQ-report.pdf (2016).

  • Schwennesen, A. T. & Forbes, R. H. Floor water in San Simon Valley, Arizona and New Mexico. U.S. Geological Survey Water Provide Paper 425-A. https://pubs.usgs.gov/wsp/0425a/report.pdf (1919).

  • Schwennesen, A. T. & Hare, R. F. Floor water within the Animas, Playas, Hachita, and San Luis Basins, New Mexico, with analyses of water and soil. U.S. Geological Survey Water-Provide Paper 422. https://pubs.usgs.gov/wsp/0422/report.pdf (1918).

  • Scibek, J. & Allen, D. M. Numerical groundwater circulate mannequin of the Abbotsford-Sumas aquifer, central Fraser Lowland of BC, Canada, and Washington State, US. Report ready for Setting Canada. https://www.sfu.ca/private/dallen/AB_Modeling_Report_Final.pdf (2005).

  • Scott, L., Hanson, C. & Cressy, C. Groundwater high quality investigation of the mid-Waitaki valley. Setting Canterbury Regional Council Kaunihera Taiao ki Waitaha Report No. R12/71. http://citeseerx.ist.psu.edu/viewdoc/obtain?doi=10.1.1.799.6506&rep=rep1&sort=pdf (2012).

  • Scott, T.-M., Nystrom, E. A. & Reddy, J. E. Groundwater high quality within the Lake Champlain and Susquehanna River basins, New York, 2014. U.S. Geological Survey Open-File Report 2016-1153. https://pubs.usgs.gov/of/2016/1153/ofr20161153.pdf (2016).

  • Selck, B. J. et al. Investigating anthropogenic and geogenic sources of groundwater contamination in a semi-arid alluvial basin, Goshen Valley, UT, USA. Water Air Soil Pollut. 229, 186 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Semeniuk, V. & Semeniuk, C. A. Sedimentary fill of basin wetlands, central Swan Coastal Plain, southwestern Australia. Half 2: distribution of sediment varieties and their stratigraphy. J. R. Soc. West. Aust. 89, 185 (2006).


    Google Scholar
     

  • Senthilkumar, M. & Gnanasundar, D. Hydrogeological characterization and hydrological modeling for devising groundwater administration methods for Chennai aquifer system, Southern India. https://www.authorea.com/doi/full/10.22541/au.158990356.67099058 (2020).

  • Seraphin, P., Gonçalvès, J., Vallet-Coulomb, C. & Champollion, C. Multi-approach evaluation of the spatial distribution of the particular yield: software to the Crau plain aquifer, France. Hydrol. J. 26, 1221–1238 (2018).

    ADS 

    Google Scholar
     

  • Serrat, P. & Lenoble, J. L. La surexploitation des aquifères du Roussillon: une ressource patrimoniale en hazard. Houille Blanche 93, 71–78 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Serviço Geológico do Brasil. Aquífero Urucuia Caracterização hidrológica com base em dados secundários. Inistério de Minas e Energia Secretaria de Geologia, Mineração e Transformação Mineral Serviço Geológico do Brasil (CPRM) report. https://rigeo.cprm.gov.br/jspui/deal with/doc/20922 (2019).

  • Shabani, M. Figuring out essentially the most appropriate interpolation technique for groundwater chemical traits mapping. Watershed Eng. Manag. 3, 196–204 (2012).


    Google Scholar
     

  • Shah, T. In the direction of a managed aquifer recharge technique for Gujarat, India: an economist’s dialogue with hydro-geologists. J. Hydrol. 518, 94–107 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Shahmohammadi-Kalalagh, S., Taran, F. & Nasiri, H. Investigating groundwater degree fluctuations through analyzing groundwater hydrograph: a case research of Naqadeh plain in north-west of Iran. Maintain. Water Resour. Manag. 6, 8 (2020).

    Article 

    Google Scholar
     

  • Shalyari, N., Alinejad, A., Hashemi, A. H. G., RadFard, M. & Dehghani, M. Well being threat evaluation of nitrate in groundwater sources of Iranshahr utilizing Monte Carlo simulation and geographic info system (GIS). MethodsX 6, 1812–1821 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shams, M. et al. Ingesting water in Gonabad, Iran: fluoride ranges in bottled, distribution community, level of use desalinator, and decentralized municipal desalination plant water. Fluoride 45, 138 (2012).

    CAS 

    Google Scholar
     

  • Shamsudduha, M. Spatial variability and prediction modeling of groundwater arsenic distributions within the shallowest alluvial aquifers in Bangladesh. J. Spat. Hydrol. 7, 33–46 (2007).


    Google Scholar
     

  • Sharaf, M. A. & Hussein, M. T. Groundwater high quality within the Saq aquifer, Saudi Arabia. Hydrol. Sci. J. 41, 683–696 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Sharpe, D. R. et al. in: Canada’s Groundwater Sources, (ed. Rivera, A.) 444–499 (Fitzhenry and Whiteside, 2013).

  • Shelton, J. L., Fram, M. S., Munday, C. M. & Belitz, Okay. Groundwater-quality information for the Sierra Nevada research unit, 2008. Outcomes from the California GAMA program. U.S. Geological Survey Information Collection 534. https://pubs.usgs.gov/ds/534/ds_534.pdf (2010).

  • Sheppard, G. M. The Hydrogeology of the Kaikoura Plains, North Canterbury, New Zealand. PhD dissertation, Univ. Canterbury (1995).

  • Shintani, T. et al. Three-dimensional construction and sources of groundwater plenty beneath the Osaka Plain, Southwest Japan. J. Hydrol. Reg. Stud. 43, 101193 (2022).

    Article 

    Google Scholar
     

  • Shterev, Okay. D. The hydrogeothermal basin of Sofia graben (Bulgaria). Environ. Geol. 46, 651–660 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Shu, L. C., Liu, P. G. & Ong’or, B. T. I. Environmental affect evaluation utilizing FORM and groundwater system reliability idea: case research Jining, China. Environ. Geol. 55, 661–667 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Siebenthal, C. E. Geology and water sources of the San Luis Valley, Colorado. U.S. Geological Survey Water-Provide Paper 240. https://pubs.usgs.gov/wsp/0240/report.pdf (1910).

  • Sikandar, P., Bakhsh, A., Arshad, M. & Rana, T. Using vertical electrical sounding resistivity technique for the situation of low salinity groundwater for irrigation in Chaj and Rachna Doabs. Environ. Earth Sci. 60, 1113–1129 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Silar, J. & Silar, J. in Utility of Tracers in Arid Zone Hydrology (eds Adar, E. M. & Leibundgut, C.) 141–150 (IAHS, 1995).

  • Simonson, B. M., Schubel, Okay. A. & Hassler, S. W. Carbonate sedimentology of the early Precambrian Hamersley Group of western Australia. Precambrian Res. 60, 287–335 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Simpson, M. A. Geology and hydrostratigraphy of the Rosetown Space (72O), Saskatchewan. Saskatchewan Analysis Council Publication No. 10416-2C98. https://www.wsask.ca/wp-content/uploads/2021/08/Groundwater-Sources-Report-Rosetown.pdf (1998).

  • Singaraja, C. et al. A research on the standing of saltwater intrusion within the coastal laborious rock aquifer of South India. Environ. Dev. Maintain. 17, 443–475 (2015).

    Article 

    Google Scholar
     

  • Singh, J., Erenstein, O., Thorpe, W. R. & Varma, A. Crop-livestock interactions and livelihoods within the Gangetic Plains of Uttar Pradesh, India: a regional synthesis. Worldwide Livestock Analysis Institute (2007).

  • Singh, Y. & Dubey, D. P. in Watershed Administration for Sustainable Improvement (eds Tiwari, R. N. & Pandey, G. P.) 122–134 (Glorious Publishing Home, 2014).

  • Sinsakul, S. Late quaternary geology of the decrease central plain, Thailand. J. Asian Earth Sci. 18, 415–426 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Sloan, M., Gillies, J. A. & Norum, D. I. Utilizing poor high quality groundwater for irrigation in Saskatchewan, Canada. Can. Water Resour. J. 16, 45–64 (1991).

    Article 

    Google Scholar
     

  • Smedley, P. L., Zhang, M., Zhang, G. & Luo, Z. Mobilisation of arsenic and different hint components in fluviolacustrine aquifers of the Huhhot Basin, Interior Mongolia. Appl. Geochem. 18, 1453–1477 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Smerdon, B. D. & Ramsley, T. R. Water useful resource evaluation for the Surat area. A technical report back to the Australian Authorities from the CSIRO Nice Artesian Basin Water Useful resource Evaluation. https://publications.csiro.au/rpr/obtain?pid=csiro:EP132644&dsid=DS4 (2012).

  • Smerdon, B. D., Ramsley, T. R., Radke, B. M., Kellett, J. R. Water useful resource evaluation for the Nice Artesian Basin. A technical report back to the Australian Authorities from the CSIRO Nice Artesian Basin Water Useful resource Evaluation. https://publications.csiro.au/rpr/obtain?pid=csiro:EP132685&dsid=DS3 (2012).

  • Smit, P. J. Groundwater recharge within the dolomite of the Ghaap Plateau close to Kuruman within the Northern Cape, Republic of South Africa. Water SA 4, 81–92 (1978).

    ADS 

    Google Scholar
     

  • Smith, D. W., Buto, S. G. & Welborn, T. L. Groundwater-level change and analysis of simulated water ranges for irrigated areas in Lahontan Valley, Churchill County, west-central Nevada, 1992–2012. U.S. Geological Survey Scientific Investigations Report 2016-5045. https://pubs.usgs.gov/sir/2016/5045/sir20165045.pdf (2016).

  • Smith, Okay. Assessing the Hydrogeologic Traits and Sources of Groundwater Recharge and Circulate within the Elandsfontein Aquifer, West Coast, Western Cape, South Africa. MSc thesis, Univ. Western Cape (2020).

  • Smith, L. N. Hydrologic framework of the Lolo-Bitterroot Space ground-water characterization research. Montana Bureau of Mines and Geology. Montana Floor-Water Evaluation Atlas 4-B-02. http://mbmg.mtech.edu/pdf-publications/GWAA04B-02.pdf (2006).

  • Smith, L. N., LaFave, J. I. & Patton, T. W. Groundwater sources of the Lolo-Bitterroot space: Mineral, Missoula, and Ravalli counties, Montana. Montana Bureau of Mines and Geology. Montana Groundwater Evaluation Atlas No. 4. http://www.mbmg.mtech.edu/pdf-publications/gwaa4a.pdf (2013).

  • Smith, L. N. Hydrogeologic framework of the southern a part of the Flathead Lake Space, Flathead, Lake, Missoula, and Sanders counties, Montana. Montana Bureau of Mines and Geology. Montana Floor-Water Evaluation Atlas 2-B-10. http://mbmggwic.mtech.edu/gwcpmaps/gwaa02map10untiled.pdf (2004).

  • Smith, M. L., Fontaine, Okay. & Lewis, S. J. Regional hydrogeological characterisation of the St Vincent Basin, South Australia. Technical Report for the Nationwide Collaboration Framework Regional Hydrogeology Mission. Geoscience Australia Report 2015/16. https://d28rz98at9flks.cloudfront.web/78884/Rec2015_016.pdf (2015).

  • Smith, S. J. et al. Hydrogeology and model-simulated groundwater availability within the Salt Fork Purple River aquifer, southwestern Oklahoma, 1980–2015. U.S. Geological Survey Scientific Investigations Report 2021-5003. https://pubs.usgs.gov/sir/2021/5003/sir20215003.pdf (2021).

  • Smith, S. J., Ellis, J. H., Wagner, D. L. & Peterson, S. M. Hydrogeology and simulated groundwater circulate and availability within the North Fork Purple River aquifer, southwest Oklahoma, 1980–2013. U.S. Geological Survey Scientific Investigations Report 2017-5098. https://pubs.usgs.gov/sir/2017/5098/sir20175098.pdf (2017).

  • Smolensky, D. A., Buxton, H. T. & Shernoff, P. Okay. Hydrologic framework of Lengthy Island, New York. U.S. Geological Survey Hydrologic Atlas 709. https://pubs.usgs.gov/ha/709/plate-1.pdf (1990).

  • Sneed, M., Brandt, J. T. & Solt, M. Land subsidence, groundwater ranges, and geology within the Coachella Valley, California, 1993–2010. U.S. Geological Survey Scientific Investigations Report 2014-5075. https://pubs.usgs.gov/sir/2014/5075/pdf/sir2014-5075.pdf (2014).

  • Sohrabi, N., Chitsazan, M., Amiri, V. & Nezhad, T. M. Analysis of groundwater sources in alluvial aquifer based mostly on MODFLOW program, case research: Evan plain (Iran). Int. J. Agric. Crop Sci. 5, 1164–1170 (2013).


    Google Scholar
     

  • Soldo, B., Mahmoudi Sivand, S., Afrasiabian, A. & Đurin, B. Impact of sinkholes on groundwater sources in arid and semi-arid karst space in Abarkooh, Iran. Environments 7, 26 (2020).

    Article 

    Google Scholar
     

  • Soltani Mohammadi, A., Sayadi Shahraki, A. & Naseri, A. A. Simulation of groundwater high quality parameters utilizing ANN and ANN+ PSO fashions (case research: Ramhormoz Plain). Air pollution 3, 191–200 (2017).


    Google Scholar
     

  • Soltani, S., Asghari Moghaddam, A., Barzegar, R. & Kazemian, N. Analysis of nitrate focus and vulnerability of the groundwater by GODS and AVI strategies (case research: Kordkandi-Duzduzan Plain, East Azarbaijan province). Iran. J. Ecohydrol. 3, 517–531 (2016).


    Google Scholar
     

  • Soltani, S., Moghaddam, A. A., Barzegar, R., Kazemian, N. & Tziritis, E. Hydrogeochemistry and water high quality of the Kordkandi-Duzduzan plain, NW Iran: software of multivariate statistical evaluation and PoS index. Environ. Monit. Assess. 189, 455 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Sorensen, J. P. et al. The affect of groundwater abstraction on decoding local weather controls and excessive recharge occasions from effectively hydrographs in semi-arid South Africa. Hydrogeol. J., 1–15 (2021).

  • Souid, F., Birkle, P. & Worrall, F. Water-rock interplay of the Jilh and Tawil aquifers within the Wadi Sirhan Basin, NW Saudi Arabia. E3S Net Conf. 98, 01047 (2019).

    Article 
    CAS 

    Google Scholar
     

  • South African Division of Water Affairs. Aquifer classification of South Africa. https://www.dws.gov.za/Groundwater/paperwork/Aquiferpercent20Classification.pdf (2012).

  • Squeo, F. A. et al. Groundwater dynamics in a coastal aquifer in north-central Chile: implications for groundwater recharge in an arid ecosystem. J. Arid. Environ. 67, 240–254 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Sreenivas, A., Gowtham, B., Vinodh, Okay. & Kumaresan, Okay. Aquifer mapping of laborious rock terrain in components of Dindigul district, Tamil Nadu. Int. J. Anal. Exp. Modal Anal. 12, 200–211 (2020).


    Google Scholar
     

  • Srivastava, M. & Poonia, O. P. Transboundary aquifers in Rajasthan, points & administration. Bhujal Information, 28–36. https://hindi.indiawaterportal.org/articles/transboundary-aquifers-rajasthan-issues-management (2010).

  • Stamos, C. L., Christensen, A. H. & Langenheim, V. Preliminary hydrogeologic evaluation close to the boundary of the Antelope Valley and El Mirage Valley groundwater basins, California. U.S. Geological Survey Scientific Investigations Report 2017-5065. https://pubs.usgs.gov/sir/2017/5065/sir20175065.pdf (2017).

  • Standen, A. R. & Kane, J. A. The spatial distribution of radiological contaminants within the Hickory aquifer and different aquifers overlying the Llano Uplift, Central Texas. Austin Geol. Soc. Bull. 1, 87–101 (2023).


    Google Scholar
     

  • Stapinsky, M. et al. Groundwater sources evaluation within the Carboniferous Maritimes Basin: preliminary outcomes of the hydrogeological characterization, New Brunswick, Nova Scotia, and Prince Edward Island. Geological Survey of Canada Present Analysis Report 2002-D8. http://www.gov.pe.ca/images/unique/cle_WA10.pdf (2002).

  • State of New Mexico, Workplace of the State Engineer. Nutt-Hockett Basin Hydrographic Survey Report. https://www.ose.state.nm.us/HydroSurvey/legal_ose_hydro_nutt-hocket.php (1998).

  • Steinbrügge, G., Muñoz Pardo, J. F. & Fernández, B. Análisis probabilístico y optimización de los recursos de agua subterránea: el caso del acuífero Maipo-Mapocho, Chile. Ingenieria hidraulica en Mexico, XX, 85–97. https://repositorio.uc.cl/dspace/bitstreams/2172bd6b-172e-4233-806a-c9c2b0af5c13/obtain (2005).

  • Steinich, B., Escolero, O. & Marín, L. E. Salt-water intrusion and nitrate contamination within the Valley of Hermosillo and El Sahuaral coastal aquifers, Sonora, Mexico. Hydrol. J. 6, 518–526 (1998).

    ADS 

    Google Scholar
     

  • Stephenson, D. A. Hydrogeology of glacial deposits of the Mahomet Bedrock Valley in east-central Illinois. Illinois State Geological Survey Round 409. https://www.beliefs.illinois.edu/gadgets/35335/bitstreams/112693/information.pdf (1967).

  • Stephenson, L. W. The bottom-water sources of Mississippi. U.S. Geological Survey Water-Provide Paper 576. https://pubs.usgs.gov/wsp/0576/report.pdf (1941).

  • Steuer, A., Helwig, S. L. & Tezkan, B. Aquifer characterization within the Ouarzazate Basin (Morocco): a contribution by TEM and RMT information. Close to Surf. Geophys. 6, 5–14 (2008).

    Article 

    Google Scholar
     

  • Stolp, B. J. et al. Age courting base circulate at springs and gaining streams utilizing helium‐3 and tritium: Fischa‐Dagnitz system, southern Vienna Basin, Austria. Water Resour. Res. 46, W07503 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Story, J. & Lopez-Gunn, E. Evaluating battle in transboundary aquifer administration: some insights from a comparative research between Spain and Australia. https://unesdoc.unesco.org/ark:/48223/pf0000190140 (2010).

  • Strom, E. W. & Mallory, M. J. Hydrogeology and simulation of ground-water circulate within the Eutaw-McShan Aquifer and within the Tuscaloosa aquifer system in northeastern Mississippi. U.S. Geological Survey Water-Sources Investigations Report 94-4223. https://pubs.usgs.gov/wri/1994/4223/report.pdf (1995).

  • Subramanian, S. & Balasubramanian, A. Hydrochemical research of Tiruchendur Coast, Tamilnadu, India. Regional Workshop on Environmental Elements of Groundwater Improvement (1994).

  • Solar, X. et al. Evaluation and analysis of the renewability of the deep groundwater within the Huaihe River Basin, China. Environ. Earth Sci. 80, 104 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Solar, Y., Zhou, J., Zho, Y., Zeng, Y. & Chen, Y. Influencing components of groundwater natural air pollution across the Bosten Lake space of Xinjiang, China. E3S Net Conf. 98, 09029 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sureshjani, M. Okay., Amanipoor, H. & Battaleb-Looie, S. The consequences of commercial wastewater on groundwater high quality of the Boroujen aquifer, Southwest Iran. Nat. Resour. Res. 29, 3719–3741 (2020).

    Article 

    Google Scholar
     

  • Sweetkind, D. S., Faunt, C. C. & Hanson, R. T. Building of 3-D geologic framework and textural fashions for Cuyama Valley groundwater basin, California. U.S. Geological Survey Scientific Investigations Report 2013-5127. https://pubs.usgs.gov/sir/2013/5127/pdf/sir2013-5127.pdf (2013).

  • Szczucińska, A., Dłużewski, M., Kozłowski, R. & Niedzielski, P. Hydrochemical range of a big alluvial aquifer in an arid zone (Draa river, S Morocco). Ecol. Chem. Eng. S 26, 81–100 (2019).


    Google Scholar
     

  • Szynkiewicz, A., Medina, M. R., Modelska, M., Monreal, R. & Pratt, L. M. Sulfur isotopic research of sulfate within the aquifer of Costa de Hermosillo (Sonora, Mexico) in relation to upward intrusion of saline groundwater, irrigation pumping and land cultivation. Appl. Geochem. 23, 2539–2558 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Tafreshi, G. M., Nakhaei, M. & Lak, R. Land subsidence threat evaluation utilizing GIS fuzzy logic spatial modeling in Varamin aquifer, Iran. GeoJournal 86, 1203–1223 (2019).

    Article 

    Google Scholar
     

  • Tagma, T., Hsissou, Y., Bouchaou, L., Bouragba, L. & Boutaleb, S. Groundwater nitrate air pollution in Souss-Massa basin (south-west Morocco). Afr. J. Environ. Sci. Technol. 3, 301–309 (2009).

    CAS 

    Google Scholar
     

  • Taheri Zangi, S. & Vaezihir, A. Vulnerability of Shazand Plain subsidence brought on by groundwater degree discount utilizing weighting mannequin and its validation evaluation utilizing radar interferometry. Iran. J. Ecohydrol. 7, 183–194 (2020).


    Google Scholar
     

  • Taheri, Okay., Missimer, T. M., Amini, V., Bahrami, J. & Omidipour, R. A GIS-expert-based strategy for groundwater high quality monitoring community design in an alluvial aquifer: a case research and a sensible information. Environ. Monit. Assess. 192, 684 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Talebi, M. S. & Fatemi, M. Evaluation of the standard and amount of groundwater in Bahadoran plain utilizing neural community strategies, geostatistical and multivariate statistical evaluation. J. Appl. Res. Water Wastewater 7, 144–151 (2020).


    Google Scholar
     

  • Tanachaichoksirikun, P. & Seeboonruang, U. Distributions of groundwater age below local weather change of Thailand’s Decrease Chao Phraya basin. Water 12, 3474 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tanaka, T. Groundwater sources, improvement and administration within the Kanto Plain, Japan. https://core.ac.uk/obtain/pdf/76125416.pdf (2004).

  • Tanigawa, Okay., Hyodo, M. & Sato, H. Holocene relative sea-level change and price of sea-level rise from coastal deposits within the Toyooka Basin, western Japan. Holocene 23, 1039–1051 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Taniguchi, M. Estimated recharge charges from groundwater temperatures within the Nara Basin, Japan. Appl. Hydrogeol. 2, 7–14 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Taucare, M. et al. Connectivity of fractures and groundwater flows analyses into the Western Andean Entrance by the use of a topological strategy (Aconcagua Basin, Central Chile). Hydrol. J. 28, 2429–2438 (2020).

    ADS 

    Google Scholar
     

  • Tauchen, P. et al. Wind/Bighorn River Basin Water Plan Replace Groundwater Research Stage 1 (2008–2011). Groundwater Willpower. Wyoming Water Improvement Fee Technical Memorandum. https://waterplan.state.wy.us/plan/bighorn/2010/gw-finalrept/gw-finalrept.pdf (2012).

  • Tavassoli, S. & Mohammadi, F. Critically evaluation of groundwater high quality based mostly on WQI and its vulnerability to saltwater intrusion in a coastal metropolis, Iran. Mod. Adv. Geogr. Environ. Earth Sci. 2, 126–138 (2021).


    Google Scholar
     

  • Taweesin, Okay., Seeboonruang, U. & Saraphirom, P. The affect of local weather variability results on groundwater time sequence within the decrease central plains of Thailand. Water 10, 290 (2018).

    Article 

    Google Scholar
     

  • Taylor, C. B. et al. Sources and circulate of north Canterbury plains groundwater, New Zealand. J. Hydrol. 106, 311–340 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Taylor, C. J. & Nelson Jr, H. L. A compilation of provisional karst geospatial information for the Inside Low Plateaus physiographic area, central United States. U.S. Geological Survey Information Collection 339. https://pubs.usgs.gov/ds/339/pdf/ds339_web.pdf (2008).

  • Taylor, G. C. & Ghosh, P. Okay. Artesian water within the Malabar coastal plain of southern Kerala, India. U.S. Geological Survey Water Provide Paper 1608-D. https://pubs.usgs.gov/wsp/1608d/report.pdf (1964).

  • Teng, Y. et al. Danger evaluation framework for nitrate contamination in groundwater for regional administration. Sci. Whole Environ. 697, 134102 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tezangi, M. F. Learning the results of drought on groundwater aquifers of Zarand, Kerman. Int. J. Pharm. Res. Allied Sci. 5, 437–447 (2016).


    Google Scholar
     

  • Thamke, J. N., LeCain, G. D., Ryter, D. W., Sando, R. & Lengthy, A. J. Hydrogeologic framework of the uppermost principal aquifer methods within the Williston and Powder River structural basins, United States and Canada. U.S. Geological Survey Scientific Investigations Report 2014-5047. https://pubs.usgs.gov/sir/2014/5047/pdf/sir2014-5047.pdf (2014).

  • Thiros, S. A., Stolp, B. J., Hadley, H. Okay. & Steiger, J. I. Hydrology and simulation of ground-water circulate in Juab Valley, Juab County, Utah. State of Utah Division of Pure Sources, Division of Water Rights Technical Publication No. 114. https://waterrights.utah.gov/docSys/v920/y920/y920000j.pdf (1996).

  • Thiros, S. A. Hydrogeology of shallow basin-fill deposits in areas of Salt Lake Valley, Salt Lake County, Utah. U.S. Geological Survey Water-Sources Investigations Report 03-4029. https://pubs.usgs.gov/wri/wri034029/pdf/wri034029.pdf (2003).

  • Thomas, H. E. Floor water in Tooele Valley, Tooele County, Utah. State of Utah Division of Pure Sources, Division of Water Rights Technical Publication No. 4. https://waterrights.utah.gov/docSys/v920/w920/w9200083.pdf (1946).

  • Thorleifson, L. H. et al. Hydrogeology and hydrogeochemistry of the Purple River Valley/Interlake area of Manitoba. Manitoba Power and Mines, Minerals Division Report of Actions, 172–185 (1998).

  • Tickell, S. J. Groundwater sources of the Oolloo Dolostone. Division of Infrastructure Planning and Setting, Pure Sources Division Report 17/2002. https://citeseerx.ist.psu.edu/viewdoc/obtain?doi=10.1.1.932.9762&rep=rep1&sort=pdf (2002).

  • Tillman, F. D., Cordova, J. T., Leake, S. A., Thomas, B. E. & Callegary, J. B. Water availability and use pilot: strategies improvement for a regional evaluation of groundwater availability, southwest alluvial basins, Arizona. U.S. Geological Survey Scientific Investigations Report 2011-5071. https://pubs.usgs.gov/sir/2011/5071/sir2011-5071_text.pdf (2011).

  • Tillman, F. D., Garner, B. D. & Truini, M. Preliminary groundwater circulate mannequin of the basin-fill aquifers in Detrital, Hualapai, and Sacramento Valleys, Mohave County, northwestern Arizona. U.S. Geological Survey Scientific Investigations Report 2013-5122. http://pubs.usgs.gov/sir/2013/5122/ (2013).

  • Timms, N. E. et al. Sedimentary facies evaluation, mineralogy and diagenesis of the Mesozoic aquifers of the central Perth Basin, Western Australia. Mar. Pet. Geol. 60, 54–78 (2015).

    Article 

    Google Scholar
     

  • Tizro, T. A., Voudouris, Okay. S. & Kamali, M. Comparative research of step drawdown and fixed discharge assessments to find out the aquifer transmissivity: the Kangavar aquifer case research, Iran. J. Water Resour. Hydraul. Eng. 3, 12–21 (2014).


    Google Scholar
     

  • Tokarsky, O. Hydrogeologic profile Alberta-Saskatchewan boundary. Report ready for the Prairie Provinces Water Board. https://www.ppwb.ca/uploads/media/5c81764eb01c3/ppwb-report-78-no-maps-en.pdf?v1 (1985).

  • Tokarsky, O. Hydrogeologic profile Saskatchewan-Manitoba boundary. Report ready for the Prairie Provinces Water Board. https://www.ppwb.ca/uploads/media/5c81764f23261/ppwb-report-79-no-maps-en.pdf?v1 (1985).

  • Tomás, R., Lopez-Sanchez, J. M., Delgado, J., Mallorquí Franquet, J. J. & Herrera García, G. in Droughts: Causes, Results and Predictions (ed. Sánchez, J. M.) 253–276 (Nova Science, 2008).

  • Tomás, R. et al. Mapping floor subsidence induced by aquifer overexploitation utilizing superior Differential SAR Interferometry: Vega Media of the Segura River (SE Spain) case research. Distant Sens. Environ. 98, 269–283 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Tomozawa, Y., Onodera, S. I. & Saito, M. Estimation of groundwater recharge and salinization in a coastal alluvial plain and Osaka megacity, Japan, utilizing δ18O, δD, and Cl. Geomate J. 16, 153–158 (2019).


    Google Scholar
     

  • Torak, L. J. & Painter, J. A. Geostatistical estimation of the underside altitude and thickness of the Mississippi River Valley alluvial aquifer. U.S. Geological Survey Scientific Investigations Map 3426. https://pubs.er.usgs.gov/publication/sim3426 (2019).

  • Torkamanitombeki, H., Rahnamarad, J. & Saadatkhah, N. Groundwater chemical indices modified because of water-level decline, Minab Plain, Iran. Environ. Earth Sci. 77, 269 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Torres-Martínez, J. A., Mora, A., Knappett, P. S., Ornelas-Soto, N. & Mahlknecht, J. Monitoring nitrate and sulfate sources in groundwater of an urbanized valley utilizing a multi-tracer strategy mixed with a Bayesian isotope mixing mannequin. Water Res. 182, 115962 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Torres-Martínez, J. A. et al. Estimation of nitrate air pollution sources and transformations in groundwater of an intensive livestock-agricultural space (Comarca Lagunera), combining main ions, secure isotopes and MixSIAR mannequin. Environ. Pollut. 269, 115445 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Torres-Martinez, J. A. et al. Constraining a density-dependent circulate mannequin with the transient electromagnetic technique in a coastal aquifer in Mexico to evaluate seawater intrusion. Hydrol. J. 27, 2955–2972 (2019).

    ADS 

    Google Scholar
     

  • Torres-Rondon, L., Carrière, S. D., Chalikakis, Okay. & Valles, V. An integrative geological and geophysical strategy to characterize a superficial deltaic aquifer within the Camargue plain, France. C. R. Geosci. 345, 241–250 (2013).

    Article 

    Google Scholar
     

  • Tosaki, Y. et al. Deep incursion of seawater into the Hiroshima Granites through the Holocene transgression: proof from 36Cl age of saline groundwater within the Hiroshima space, Japan. Geochem. J. 51, 263–275 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tournoud, M. G., Payraudeau, S., Cernesson, F. & Salles, C. Origins and quantification of nitrogen inputs right into a coastal lagoon: software to the Thau lagoon (France). Ecol. Mannequin. 193, 19–33 (2006).

    Article 

    Google Scholar
     

  • Tran, D. A. et al. Groundwater high quality analysis and well being threat evaluation in coastal lowland areas of the Mekong Delta, Vietnam. Groundw. Maintain. Dev. 15, 100679 (2021).

    Article 

    Google Scholar
     

  • Trapp Jr, H. Hydrology of sand-and-gravel aquifer in central and southern Escambia County, Florida. U.S. Geological Survey Open-File Report 74-218. https://pubs.usgs.gov/of/1974/0218/report.pdf (1973).

  • Trapp Jr, H. & Horn, M. A. Floor water atlas of america: Section 11, Delaware, Maryland, New Jersey, North Carolina, Pennsylvania, Virginia, West Virginia. U.S. Geological Survey Hydrologic Investigations Atlas 730-L. https://pubs.usgs.gov/ha/730l/report.pdf (1997).

  • Treu, F. et al. Intrinsic vulnerability of the Isonzo/Soča excessive plain aquifer (NE Italy–W Slovenia). J. Maps 13, 799–810 (2017).

    Article 

    Google Scholar
     

  • Truong, P. V. Hydrogeochemistry traits and salinity of groundwater in Quaternary sediments within the coastal zone of Ha Tinh province. Vietnam J. Earth Sci. 37, 70–78 (2015).


    Google Scholar
     

  • Tucci, P. Use of a three-dimensional mannequin for the evaluation of the ground-water circulate system in Parker Valley, Arizona and California. U.S. Geological Survey Open-File Report 82-1006. https://pubs.usgs.gov/of/1982/1006/report.pdf (1982).

  • U.S. Geological Survey. Nationwide water abstract 1984: hydrologic occasions, chosen water-quality tendencies, and ground-water sources. U.S. Geological Survey Water-Provide Paper 2275. https://pubs.usgs.gov/wsp/2275/report.pdf (1984).

  • Umvoto Africa. The evaluation of water availability within the Berg Catchment (WMA 19) by the use of Water Useful resource Associated Fashions. Division of Water Affairs and Forestry report. https://www.dws.gov.za/Paperwork/Different/WMA/19/Experiences/Rep9-Vol5-GWpercent20Capepercent20Flatspercent20Aquifer.pdf (2008).

  • United States Bureau of Reclamation. Remaining feasibility-level particular research report. Odessa subarea particular research. https://www.usbr.gov/pn/packages/eis/odessa/finaleis/last.pdf (2012).

  • College of Greenwich and Gujarat Institute of Desert Ecology. Ecosystem evaluation of the coastal plain pure space of Kachchh District: planning for biodiversity and livelihoods into the longer term. Mission presentation. https://gala.gre.ac.uk/id/eprint/16221/1/16221percent20BARTLETT_Coastal_Plain_of_Kachchh_2016.pdf (2016).

  • Upson, J. E. & Thomasson, H. G. Geology and water sources of the Santa Ynez river basin, Santa Barbara County, California, Vol. 2. U.S. Geological Survey Water-Provide Report 1107. https://pubs.usgs.gov/wsp/1107/report.pdf (1951).

  • Urresti-Estala, B., Gavilán, P. J., Pérez, I. V. & Cantos, F. C. Evaluation of hydrochemical tendencies within the extremely anthropised Guadalhorce River basin (southern Spain) by way of compliance with the European groundwater directive for 2015. Environ. Sci. Pollut. Res. 23, 15990–16005 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Urrutia, J. et al. Hydrogeology and sustainable future groundwater abstraction from the Agua Verde aquifer within the Atacama Desert, northern Chile. Hydrol. J. 26, 1989–2007 (2018).

    ADS 

    Google Scholar
     

  • US Military Corps of Engineers. Water sources evaluation of El Salvador. https://www.sam.usace.military.mil/Portals/46/docs/army/engineering/docs/WRA/ElSalvador/Elpercent20Salvadorpercent20WRApercent20English.pdf (1998).

  • Uthman, W. & Beck J. Hydrogeology of the Higher Beaverhead Basin close to Dillon, Montana. Montana Bureau of Mines and Geology Open-File Report 384. https://dnrc.mt.gov/_docs/water/Hydro_science_data/mbmg_open-file_report_384.pdf (1998).

  • Uugulu, S. & Wanke, H. Estimation of groundwater recharge in savannah aquifers alongside a precipitation gradient utilizing chloride mass steadiness technique and environmental isotopes, Namibia. Phys. Chem. Earth A/B/C 116, 102844 (2020).

    Article 

    Google Scholar
     

  • Vaccaro, J. J., Hansen, A. J. & Jones, M. A. Hydrogeologic framework of the Puget Sound aquifer system, Washington and British Columbia. U.S. Geological Survey Skilled Paper 1424-D. https://pubs.usgs.gov/pp/1424d/report.pdf (1998).

  • Vaccaro, J. J. et al. Groundwater availability of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho. U.S. Geological Survey Skilled Paper 1817. https://doi.org/10.3133/pp1817 (2015).

  • Vaezihir, A. & Tabarmayeh, M. Whole vulnerability estimation for the Tabriz aquifer (Iran) by combining a brand new mannequin with DRASTIC. Environ. Earth Sci. 74, 2949–2965 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Valin, Z. C. & McLaughlin, R. J. Places and information for water wells of the Santa Rosa Valley, Sonoma County, California. U.S. Geological Survey Open File Report 2005-1318. https://pubs.usgs.gov/of/2005/1318/of2005-1318.pdf (2005).

  • van Geldern, R. et al. Pleistocene paleo-groundwater as a pristine recent water useful resource in southern Germany–proof from secure and radiogenic isotopes. Sci. Whole Environ. 496, 107–115 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Van Lam, N., Van Hoan, H. & Duc Nhan, D. Investigation into groundwater sources in southern a part of the Purple River’s Delta Plain, Vietnam by means of isotopic methods. Water 11, 2120 (2019).

    Article 

    Google Scholar
     

  • Varma, A. Groundwater useful resource and governance in Kerala. Standing, points and prospects. Discussion board for Coverage Dialogue on Water Conflicts in India. Kerala Useful resource Centre report. https://www.soppecom.org/pdf/Groundwater-Useful resource-and-Governance-in-Kerala.pdf (2017).

  • Varma, S. & Michael, Okay. Impression of multi-purpose aquifer utilisation on a variable-density groundwater circulate system within the Gippsland Basin, Australia. Hydrol. J. 20, 119–134 (2012).

    ADS 

    Google Scholar
     

  • Vazquez Sanchez, E., Cortes, A., Jaimes Palomera, R., Fritz, P. & Aravena, R. Hidrogeologia isotopica de los valles de Cuautla y Yautepec, Mexico. Geofís. Int. 28, 245–264 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • Vazquez, J. G., Grande, J. A., Barragán, F. J., Ocaña, J. A. & De La Torre, M. L. Nitrate accumulation and different parts of the groundwater in relation to cropping system in an aquifer in Southwestern Spain. Water Resour. Manag. 19, 1–22 (2005).

    Article 

    Google Scholar
     

  • Vega-Granillo, E. L., Cirett-Galán, S., De la Parra-Velasco, M. L. & Zavala-Juárez, R. Hidrogeología de Sonora, México. Panorama de la geología de Sonora, México (ed. Calmus, T.) 267–298. Universidad Nacional Autónoma de México, Instituto de Geología, Boletín 118. https://boletin.geologia.unam.mx/index.php/boletin/difficulty/view/14/12 (2011).

  • Vergnes, J. P. et al. The AquiFR hydrometeorological modelling platform as a software for enhancing groundwater useful resource monitoring over France: analysis over a 60-year interval. Hydrol. Earth Syst. Sci. 24, 633–654 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Vetrimurugan, E., Elango, L. & Rajmohan, N. Sources of contaminants and groundwater high quality within the coastal a part of a river delta. Int. J. Environ. Sci. Technol. 10, 473–486 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Veve, T. D. & Taggart, B. E. Atlas of Floor-Water Sources in Puerto Rico and the U.S. Virgin Islands. U.S. Geological Survey Water-Sources Investigations Report 94-4198. https://pubs.usgs.gov/wri/1994/4198/report.pdf (1996).

  • Villanueva-Hernández, H., Tovar-Cabañas, R. & Vargas-Castilleja, R. Classification of aquifers within the Mina area, Nuevo Leon, utilizing geographic info methods. Tecnol. Cienc. Agua 10, 96–123 (2019).

    Article 

    Google Scholar
     

  • Villegas, P., Paredes, V., Betancur, T. & Ribeiro, L. Assessing the hydrochemistry of the Urabá Aquifer, Colombia by principal part evaluation. J. Geochem. Explor. 134, 120–129 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Virbulis, J., Bethers, U., Saks, T., Sennikovs, J. & Timuhins, A. Hydrogeological mannequin of the Baltic Artesian Basin. Hydrol. J. 21, 845–862 (2013).

    ADS 

    Google Scholar
     

  • Vizintin, G., Souvent, P., Veselič, M. & Curk, B. C. Willpower of city groundwater air pollution in alluvial aquifer utilizing linked course of fashions contemplating city water cycle. J. Hydrol. 377, 261–273 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vogel, J. C., Talma, A. S., Heaton, T. H. E. & Kronfeld, J. Evaluating the speed of migration of an uranium deposition entrance throughout the Uitenhage Aquifer. J. Geochem. Explor. 66, 269–276 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Vroblesky, D. A. & Fleck, W. B. Hydrogeologic Framework of the Coastal Plain of Maryland, Delaware, and the District of Columbia. U.S. Geological Survey Skilled Paper 1404-E. https://pubs.usgs.gov/pp/1404e/report.pdf (1991).

  • Wacker, M. A., Cunningham, Okay. J. & Williams, J. H. Geologic and hydrogeologic frameworks of the Biscayne aquifer in central Miami-Dade County, Florida. U.S. Geological Survey Scientific Investigations Report 2014-5138. https://pubs.usgs.gov/sir/2014/5138/pdf/sir2014-5138.pdf (2014).

  • Wade, S. & Jigmond, M. Groundwater availability mannequin of west Texas Bolsons (Presidio and Redford) Aquifer. Texas Water Improvement Board report. https://www.twdb.texas.gov/groundwater/fashions/gam/prbl/PRBL_ModelFinalReport.pdf (2013).

  • Wallace, J. & Lowe, M. Floor-water high quality classification for the Principal Basin-fill Aquifer, Salt Lake Valley, Salt Lake County, Utah. Utah Geological Survey Open-File Report 560. https://ugspub.nr.utah.gov/publications/open_file_reports/ofr-560.pdf (2009).

  • Wang, D., Yang, C. & Shao, L. The spatiotemporal evolution of hydrochemical traits and groundwater high quality evaluation in Urumqi, Northwest China. Arab. J. Geosci. 14, 161 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. & Iwao, Y. Groundwater traits of the Saga Plain, Japan. J. Nepal Geol. Soc. 22, 343–350 (2000).

    CAS 

    Google Scholar
     

  • Wang, S. J., Lee, C. H., Yeh, C. F., Choo, Y. F. & Tseng, H. W. Analysis of local weather change affect on groundwater recharge in groundwater areas in Taiwan. Water 13, 1153 (2021).

    Article 

    Google Scholar
     

  • Wang, S. et al. Shallow groundwater dynamics in North China plain. J. Geog. Sci. 19, 175–188 (2009).

    Article 

    Google Scholar
     

  • Washington State Division of Ecology. Puget Sound groundwater toxics loading evaluation: direct discharge pathway. Publication No. 10-03-122. https://apps.ecology.wa.gov/publications/paperwork/1003122.pdf (2010).

  • Water and Marine Sources Division. Tasmanian Aquifer Framework. Groundwater Administration Report Collection. Report No. GW 2012/02. https://nre.tas.gov.au/Paperwork/Tasmanianpercent20Aquiferpercent20Framework.pdf (2012).

  • Watts, Okay. R. Hydrogeology and high quality of floor water within the higher Arkansas River Basin from Buena Vista to Salida, Colorado, 2000–2003. U.S. Geological Survey Scientific Investigations Report 2005-5179. https://pubs.usgs.gov/sir/2005/5179/pdf/SIR2005-5179.pdf (2005).

  • Wei, M., Allen, D. M., Carmichael, V. & Ronneseth, Okay. State of understanding of the hydrogeology of the Grand Forks aquifer. Water Stewardship Division, BC Ministry of Setting Report. https://www.grandforks.ca/wp-content/uploads/experiences/2010-Hydrogeology-Research-of-Grand-Forks-area.pdf (2010).

  • Weiss, J. S. Geohydrologic items of the coastal lowlands aquifer system, south-central United States. U.S. Geological Survey regional aquifer-system evaluation. https://pubs.usgs.gov/pp/1416c/report.pdf (1990).

  • Welch, A. H., Sorey, M. L. & Olmsted, F. H. Hydrothermal system in Southern Grass Valley, Pershing County, Nevada. U.S. Geological Survey Open-File Report 81-915. https://www.osti.gov/servlets/purl/5119283-5mJ8YB/ (1981).

  • Welder, G. E. Geohydrologic framework of the Roswell ground-water basin, Chaves and Eddy Counties, New Mexico. New Mexico State Engineer Technical Report 42. https://www.ose.state.nm.us/Library/TechnicalReports/TechReport-042.pdf (1983).

  • Welder, G. E. Plan of research for the regional aquifer system evaluation of the San Juan structural basin, New Mexico, Colorado, Arizona, and Utah. U.S. Geological Survey Water-Sources Investigations Report 85-4294. https://pubs.usgs.gov/wri/1985/4294/report.pdf (1986).

  • Wellman, T. P. Analysis of groundwater ranges within the South Platte River alluvial aquifer, Colorado, 1953–2012, and design of preliminary effectively networks for monitoring groundwater ranges. U.S. Geological Survey Scientific Investigations Report 2015-5015. https://pubs.usgs.gov/sir/2015/5015/pdf/sir2015-5015.pdf (2015).

  • Welsh, W. D. Spatial and temporal water steadiness estimates utilizing a GIS. Engineers Australia. https://openresearch-repository.anu.edu.au/bitstream/1885/43108/2/HYDRO2005_bowen2.pdf (2005).

  • Westjohn, D. B. & Weaver, T. L. Hydrogeologic framework of the Michigan Basin regional aquifer system. U.S. Geological Survey Skilled Paper 1418. https://pubs.usgs.gov/pp/1418/report.pdf (1998).

  • Whitcomb, H. A. & Lowry, M. E. Floor-water sources and geology of the Wind River Basin space, central Wyoming. U.S. Geological Survey Hydrologic Atlas 270. https://pubs.usgs.gov/ha/270/report.pdf (1968).

  • White, P. A. & Reeves, R. R. The amount of groundwater in New Zealand 1994 to 2001. Statistics New Zealand, Consumer Report 2002/79. https://docs.niwa.co.nz/library/public/volume-of-groundwater-in-nz-2001percent5B1percent5D.pdf (2002).

  • White, W. N. Preliminary report on the ground-water provide of Mimbres Valley, New Mexico. U.S. Geological Survey Water Provide Paper 637. https://pubs.usgs.gov/wsp/0637B/report.pdf (1931).

  • Whitehead, E. J. & Lawrence, A. R. The Chalk aquifer of Lincolnshire. British Geological Survey Analysis Report RR/06/03. http://nora.nerc.ac.uk/id/eprint/3699/1/RR06003.pdf (2006).

  • Whitehead, R. L. Geohydrologic framework of the Snake River Plain regional aquifer system, Idaho and japanese Oregon. U.S. Geological Survey Skilled Paper 1408-B. https://pubs.usgs.gov/pp/1408b/report.pdf (1992).

  • Whittlemore, D. O., Macfarlane, P. A. & Wilson, B. B. Water Sources of the Dakota Aquifer in Kansas. Kansas Geological Survey Bulletin 260. http://www.kgs.ku.edu/Publications/Bulletins/260/Bulletin_260_Dakota.pdf (2014).

  • Wildermuth Environmental. Chino Basin Optimum Basin Administration Program. State of the Basin Report – 2004. Report ready for Chino Basin Watermaster. http://www.cbwm.org/docs/engdocs/isob/ISOB_Final_FullVersion.pdf (2005).

  • Wilkes, P. Baseline evaluation of groundwater traits within the Beetaloo Sub-basin, NT. GISERA Mission Order. https://gisera.csiro.au/wp-content/uploads/2018/10/Water-16-Mission-Order-1.pdf (2018).

  • Williams, L. J. & Kuniansky, E. L. Revised hydrogeologic framework of the Floridan aquifer system in Florida and components of Georgia, Alabama, and South Carolina. U.S. Geological Survey Skilled Paper 1807. https://pubs.usgs.gov/pp/1807/pdf/pp1807.pdf (2016).

  • Willmes, M. et al. Mapping of bioavailable strontium isotope ratios in France for archaeological provenance research. Appl. Geochem. 90, 75–86 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wilson, D. D. The importance of geology in some present water useful resource issues, Canterbury Plains, New Zealand. J. Hydrol. (New Zeal.) 12, 103–118 (1973).


    Google Scholar
     

  • Wilson, H. D. Floor-water appraisal of Santa Ynez River basin, Santa Barbara County, California, 1945-52. U.S. Geological Survey Water-Provide Paper 1467. https://pubs.usgs.gov/wsp/1467/report.pdf (1959).

  • Wilson, J. E., Brown, S., Schreier, H., Scovill, D. & Zubel, M. Arsenic in groundwater wells in Quaternary deposits within the Decrease Fraser Valley of British Columbia. Can. Water Resour. J. 33, 397–412 (2008).

    Article 

    Google Scholar
     

  • Wilson, J. T. Water-quality evaluation of the Cambrian-Ordovician aquifer system within the northern Midwest, United States. U.S. Geological Survey Scientific Investigations Report 2011-5229. https://pubs.usgs.gov/sir/2011/5229/pdf/SIR20115229_web.pdf (2012).

  • Winner Jr, M. D. & Coble, R. W. Hydrogeologic framework of the North Carolina Coastal Plain aquifer system. U.S. Geological Survey Open-File Report 87-690. https://pubs.usgs.gov/of/1987/0690/report.pdf (1989).

  • Wolfgang, C. Hydrogeology of the Pilliga sandstone aquifer within the Western Coonamble embayment and its implications for water useful resource administration. PhD thesis, Australia Nationwide Univ. (2000).

  • Wooden, P. R. Geology and ground-water options of the Butte Valley area, Siskiyou County, California. U.S. Geological Survey Water-Provide Paper 1491. https://pubs.usgs.gov/wsp/1491/report.pdf (1960).

  • Wooden, P. R. & Davis, G. H. Floor-water circumstances within the Avenal-McKittrick Space Kings and Kern Counties California. U.S. Geological Survey Water-Provide Paper 1457. https://pubs.usgs.gov/wsp/1457/report.pdf (1959).

  • Woodman, N. D., Burgess, W. G., Ahmed, Okay. M. & Zahid, A. {A partially} coupled hydro-mechanical evaluation of the Bengal Aquifer System below hydrological loading. Hydrol. Earth Syst. Sci. 23, 2461–2479 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Woodward, D. G., Gannett, M. W. & Vaccaro, J. J. Hydrogeologic framework of the Willamette Lowland aquifer system, Oregon and Washington. U.S. Geological Survey Skilled Paper 1424-B. https://pubs.usgs.gov/pp/1424b/report.pdf (1998).

  • Woolfenden, L. R. & Nishikawa, T. Simulation of groundwater and surface-water sources of the Santa Rosa Plain watershed, Sonoma County, California. U.S. Geological Survey Scientific Investigations Report 2014-5052. https://pubs.usgs.gov/sir/2014/5052/pdf/sir2014-5052.pdf (2014).

  • Worts, G. F. & Thomasson, H. G. Geology and ground-water sources of the Santa Maria Valley space, California. U.S. Geological Survey Water-Provide Paper 1000. https://pubs.usgs.gov/wsp/1000/report.pdf (1951).

  • Wright, P. R. Hydrogeology and water high quality within the Snake River alluvial aquifer at Jackson Gap Airport, Jackson, Wyoming, water years 2011 and 2012. U.S. Geological Survey Scientific Investigations Report 2013-5184. https://pubs.usgs.gov/sir/2013/5184/pdf/sir2013-5184.pdf (2013).

  • Wurl, J. & Imaz-Lamadrid, M. A. Coupled floor water and groundwater mannequin to design managed aquifer recharge for the valley of Santo Domingo, BCS, Mexico. Maintain. Water Resour. Manag. 4, 361–369 (2018).

    Article 

    Google Scholar
     

  • Xiao, Y. et al. Hydrogeochemical constraints on groundwater useful resource sustainable improvement within the arid Golmud alluvial fan plain on Tibetan plateau. Environ. Earth Sci. 80, 750 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, N., Gong, J. & Yang, G. Utilizing environmental isotopes together with main hydro-geochemical compositions to evaluate deep groundwater formation and evolution in japanese coastal China. J. Contam. Hydrol. 208, 1–9 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. S., Shen, S. L., Ma, L., Solar, W. J. & Yin, Z. Y. Analysis of the blocking impact of retaining partitions on groundwater seepage in aquifers with totally different insertion depths. Eng. Geol. 183, 254–264 (2014).

    Article 

    Google Scholar
     

  • Xue, Z., Du, P., Li, J. & Su, H. Sparse graph regularization for strong crop mapping utilizing hyperspectral remotely sensed imagery with only a few in situ information. ISPRS J. Photogramm. Distant Sens. 124, 1–15 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Yamamoto, S. The groundwater hydrology of river valley (2) on the groundwater of Kinokawa valley. Geogr. Rev. Jpn. 24, 8–16 (1951).

    Article 

    Google Scholar
     

  • Yang, W. Q., Shen, L., Xiao, H. & Wang, Y. Z. Impression of shallow groundwater high quality evolution in Kunming City by human actions. Adv. Mater. Res. 788, 302–306 (2013).

    Article 

    Google Scholar
     

  • Yangouliba, G. I. et al. Modelling previous and future land use and land cowl dynamics within the Nakambe River Basin, West Africa. Mannequin. Earth Syst. Environ. 9, 1651–1667 (2022).

    Article 

    Google Scholar
     

  • Yazdi, Z. & Niroumand, H. Assessing land subsidence in Qazvin plain brought on by groundwater degree drop, utilizing finite components and finite distinction strategies. GeoTerrace-2020-043. https://eage.in.ua/wp-content/uploads/2020/12/GeoTerrace-2020-043.pdf (2020).

  • Yeh, H. F. Spatiotemporal variation of the meteorological and groundwater droughts in central Taiwan. Entrance. Water 3, 636792 (2021).

    Article 

    Google Scholar
     

  • Yeh, H. F., Lin, H. I., Lee, C. H., Hsu, Okay. C. & Wu, C. S. Figuring out seasonal groundwater recharge utilizing environmental secure isotopes. Water 6, 2849–2861 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Yoneda, M. et al. Groundwater deterioration brought on by induced recharge: area survey and verification of the deterioration mechanism by stochastic numerical simulation. Water Air Soil Pollut. 127, 125–156 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yonesi, H. et al. Evaluating groundwater high quality in Zayandehrood southern sub-basin aquifers. Desert Ecosyst. Eng. J. 9, 103–115 (2020).


    Google Scholar
     

  • Yoosefdoo, I. & Khashei Siuki, A. Decide the vulnerability of the aquifer utilizing the usual drastic and data-based strategies (case research: Kochisfahan Aquifer). Iran. J. Distant Sens. GIS 9, 99–116 (2018).


    Google Scholar
     

  • Yoshioka, Y. et al. A number of‐indicator research of the response of groundwater recharge sources to extremely turbid river water after a landslide within the Tedori River alluvial fan, Japan. Hydrol. Course of. 34, 3539–3554 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Yoshioka, Y. & Yoshioka, H. Spatiotemporal variability of hydrogen secure isotopes at an area scale in shallow groundwater through the heat season in Tottori Prefecture, Japan. Hydrol. Res. Lett. 16, 25–31 (2022).

    Article 

    Google Scholar
     

  • Younger, H. L. Hydrogeology of the Cambrian-Ordovician aquifer system within the northern Midwest, United States. U.S. Geological Survey Skilled Paper 1405-B. https://pubs.usgs.gov/pp/1405b/report.pdf (1992).

  • Younger, H. W. Reconnaissance of ground-water sources within the Mountain Dwelling plateau space, southwest Idaho. U.S. Geological Survey Water-Sources Investigations Report 77-108. https://pubs.usgs.gov/wri/1977/0108/report.pdf (1977).

  • Younger, R. A. & Carpenter, C. H. Floor-water circumstances and storage within the Central Sevier Valley, Utah. U.S. Geological Survey Water-Provide Paper 1787. https://pubs.usgs.gov/wsp/1787/report.pdf (1965).

  • Yu, H. L. & Chu, H. J. Recharge sign identification based mostly on groundwater degree observations. Environ. Monit. Assess. 184, 5971–5982 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, H. L. & Chu, H. J. Understanding house–time patterns of groundwater system by empirical orthogonal capabilities: a case research within the Choshui River alluvial fan, Taiwan. J. Hydrol. 381, 239–247 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Yustres, Á., Navarro, V., Asensio, L., Candel, M. & García, B. Groundwater sources within the Higher Guadiana Basin (Spain): a regional modelling evaluation. Hydrol. J. 21, 1129 (2013).

    ADS 

    Google Scholar
     

  • Zandi, R., Ghahraman, Okay. & Asadi, Z. Monitoring the land subsidence and its related landforms utilizing distant sensing methods in Feyzabad Plain (north-east Iran). J. Hydrosci. Environ. 3, 43–51 (2019).


    Google Scholar
     

  • Zare, M. & Koch, M. Computation of the irrigation water demand within the Miandarband plain, Iran, utilizing FAO-56-and satellite-estimated crop coefficients. Interdiscip. Res. Rev. 12, 15–25 (2017).


    Google Scholar
     

  • Zarour, H., Aitchison-Earl, P., Scott, M., Peaver, L. & De Silva, J. Present state of the groundwater useful resource within the Orari-Temuka-Opihi-Pareora space. Setting Canterbury Regional Council Report No. R16/41. https://api.ecan.govt.nz/TrimPublicAPI/paperwork/obtain/2964277 (2018).

  • Zaryab, A., Nassery, H. R. & Alijani, F. Figuring out sources of groundwater salinity and main hydrogeochemical processes within the Decrease Kabul Basin aquifer, Afghanistan. Environ. Sci. Course of. Impacts 23, 1589–1599 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, Y., Zhou, Y., Zhou, J., Jia, R. & Wu, J. Distribution and enrichment components of high-arsenic groundwater in Inland Arid space of PR China: a case research of the Shihezi space, Xinjiang. Expos. Well being 10, 1–13 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, B. et al. The renewability and high quality of shallow groundwater in Sanjiang and Songnen Plain, Northeast China. J. Integr. Agric. 16, 229–238 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, G., Deng, W., Yang, Y. S. & Salama, R. B. Evolution research of a regional groundwater system utilizing hydrochemistry and secure isotopes in Songnen Plain, northeast China. Hydrol. Course of. 21, 1055–1065 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, H., Xu, Y., Cheng, S., Li, Q. & Yu, H. Utility of the dual-isotope strategy and Bayesian isotope mixing mannequin to determine nitrate in groundwater of a a number of land-use space in Chengdu Plain, China. Sci. Whole Environ. 717, 137134 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H., Yang, R., Wang, Y. & Ye, R. The analysis and prediction of agriculture-related nitrate contamination in groundwater in Chengdu Plain, southwestern China. Hydrol. J. 27, 785–799 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, L., Stauffacher, M., Walker, G. R. & Dyce, P. Recharge estimation within the Liverpool Plains (NSW) for enter groundwater fashions. CSIRO Technical Report 10/97 (1997).

  • Zhang, Q. et al. Predicting the danger of arsenic contaminated groundwater in Shanxi Province, Northern China. Environ. Pollut. 165, 118–123 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W. et al. Utilizing noble gases to hint groundwater evolution and assess helium accumulation in Weihe Basin, central China. Geochim. Cosmochim. Acta 251, 229–246 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Y., Gable, C. W., Zyvoloski, G. A. & Walter, L. M. Hydrogeochemistry and fuel compositions of the Uinta Basin: A regional-scale overview. AAPG Bull. 93, 1087–1118 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Land subsidence and uplift because of long-term groundwater extraction and synthetic recharge in Shanghai, China. Hydrol. J. 23, 1851–1866 (2015).

    ADS 

    Google Scholar
     

  • Zhen, L. & Martin, P. Geohydrology, simulation of regional groundwater circulate, and evaluation of water-management methods, Twentynine Palms space, California. U.S. Geological Survey Scientific Investigations Report 2010-5249. https://pubs.usgs.gov/sir/2010/5249/pdf/sir20105249.pdf (2011).

  • Zhong, Y. et al. Groundwater depletion within the West Liaohe River Basin, China and its implications revealed by GRACE and in situ measurements. Distant Sens. 10, 493 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, J., Hu, B. X., Cheng, G., Wang, G. & Li, X. Improvement of a 3‐dimensional watershed modelling system for water cycle within the center a part of the Heihe rivershed, within the west of China. Hydrol. Course of. 25, 1964–1978 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, Y., Wang, Y., Li, Y., Zwahlen, F. & Boillat, J. Hydrogeochemical traits of central Jianghan Plain, China. Environ. Earth Sci. 68, 765–778 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, Z. & Zhong, J. Function of atmospheric temperature and seismic exercise in spring water hydrogeochemistry in Urumqi, China. Int. J. Environ. Res. Public Well being 19, 12004 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, G. F., Li, Z. Z., Su, Y. H., Ma, J. Z. & Zhang, Y. Y. Hydrogeochemical and isotope proof of groundwater evolution and recharge in Minqin Basin, Northwest China. J. Hydrol. 333, 239–251 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zulfic, D., Harrington, N. & Evans, S. Uley Basin groundwater modelling undertaking, quantity 2: groundwater circulate mannequin. DWLBC Report 2007/04, Division of Water, Land and Biodiversity Conservation. https://www.waterconnect.sa.gov.au/Content material/Publications/DEW/ki_dwlbc_report_2007_04.pdf (2006).

  • GebreEgziabher, M., Jasechko, S. & Perrone, D. Widespread and elevated drilling of wells into fossil aquifers within the USA. Nat. Commun. 13, 2129 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taher, M. R., Chornack, M. P. & Mack, T. J. Groundwater ranges within the Kabul Basin, Afghanistan, 2004–2013. U.S. Geological Survey Open-File Report 2013-1296. https://doi.org/10.3133/ofr20131296 (2014).

  • Gong, H. et al. Lengthy-term groundwater storage adjustments and land subsidence improvement within the North China Plain (1971–2015). Hydrol. J. 26, 1417–1427 (2018).

    ADS 

    Google Scholar
     

  • Winckel, A., Ollagnier, S. & Gabillard, S. Managing groundwater sources utilizing a nationwide reference database: the French ADES idea. SN Appl. Sci. 4, 217 (2022).

    Article 

    Google Scholar
     

  • Ascott, M. J. et al. In situ observations and lumped parameter mannequin reconstructions reveal intra‐annual to multidecadal variability in groundwater ranges in sub‐Saharan Africa. Water Resour. Res. 56, e2020WR028056 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Tao, S. et al. Modifications in China’s water sources within the early twenty first century. Entrance. Ecol. Environ. 18, 188–193 (2020).

    Article 

    Google Scholar
     

  • Adamson, J. Okay. et al. Significance of river infiltration to the Port-Au-Prince metropolitan area: a case research of two alluvial aquifers in Haiti. Hydrol. J. 30, 1367–1386 (2022).

    ADS 

    Google Scholar
     

  • Vongphachanh, S., Gupta, A. D., Milne-Dwelling, W., Ball, J. E. & Pavelic, P. Hydrogeological reconnaissance of Sukhuma District, Champasak Province, Southern Laos. J. Hydrol. (New Zeal.) 56, 79–96 (2017).


    Google Scholar
     

  • Fallatah, O. A. Groundwater high quality patterns and spatiotemporal change in depletion within the areas of the Arabian protect and Arabian shelf. Arab. J. Sci. Eng. 45, 341–350 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hsu, Y. J. et al. Assessing seasonal and interannual water storage variations in Taiwan utilizing geodetic and hydrological information. Earth Planet. Sci. Lett. 550, 116532 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Taylor, S. J. & Letham, B. Forecasting at scale. Am. Stat. 72, 37–45 (2018).

    Article 
    MathSciNet 

    Google Scholar
     

  • Friedman, J. H. & Stuetzle, W. Projection pursuit regression. J. Am. Stat. Assoc. 76, 817–823 (1981).

    Article 
    MathSciNet 

    Google Scholar
     

  • Theil, H. A rank-invariant technique of linear and polynomial regression evaluation. Indag. Math. 12, 386–392 (1950).

    MathSciNet 

    Google Scholar
     

  • Sen, P. Okay. Estimates of the regression coefficient based mostly on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    Article 
    MathSciNet 

    Google Scholar
     

  • Holland, P. W. & Welsch, R. E. Strong regression utilizing iteratively reweighted least-squares. Commun. Stat. Idea Strategies 6, 813–827 (1977).

    Article 

    Google Scholar
     

  • Kirchner, J. W. Quantifying new water fractions and transit time distributions utilizing ensemble hydrograph separation: idea and benchmark take a look at. Hydrol. Earth Syst. Sci. 23, 303–349 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kirchner, J. W. & Knapp, J. L. A. Technical word: Calculation scripts for ensemble hydrograph separation. Hydrol. Earth Syst. Sci. 24, 5539–5558 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fisher, M. & Bolles, R. Random pattern consensus: a paradigm for mannequin becoming with functions to picture evaluation and automatic cartography. Commun. ACM 24, 381–395 (1981).

    Article 
    MathSciNet 

    Google Scholar
     

  • Önöz, B. & Bayazit, M. Block bootstrap for Mann–Kendall pattern take a look at of serially dependent information. Hydrol. Course of. 26, 3552–3560 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Shamsudduha, M. & Taylor, R. G. Groundwater storage dynamics on the earth’s giant aquifer methods from GRACE: uncertainty and function of maximum precipitation. Earth Syst. Dyn. 11, 755–774 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Landerer, F. W. & Swenson, S. C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 48, W04531 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved strategies for observing Earth’s time variable mass distribution with GRACE utilizing spherical cap mascons. J. Geophys. Res. Stable Earth 120, 2648–2671 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Wiese, D. N., Landerer, F. W. & Watkins, M. M. Quantifying and decreasing leakage errors within the JPL RL05M GRACE mascon answer. Water Resour. Res. 52, 7490–7502 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Biancale, R. et al. 3 Years of Geoid Variations from GRACE and LAGEOS Information at 10-day Intervals from July 2002 to March 2005. CNES/GRGS information product (2006).

  • de Graaf, I. D., Sutanudjaja, E. H., Van Beek, L. P. H. & Bierkens, M. F. P. A high-resolution global-scale groundwater mannequin. Hydrol. Earth Syst. Sci. 19, 823–837 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Duran-Llacer, I. et al. Classes to be discovered: groundwater depletion in Chile’s Ligua and Petorca watersheds via an Interdisciplinary strategy. Water 12, 2446 (2020).

    Article 

    Google Scholar
     

  • Narvaez-Montoya, C. et al. Predicting antagonistic eventualities for a transboundary coastal aquifer system within the Atacama Desert (Peru/Chile). Sci. Whole Environ. 806, 150386 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Oiro, S., Comte, J. C., Soulsby, C., MacDonald, A. & Mwakamba, C. Depletion of groundwater sources below fast urbanisation in Africa: current and future tendencies within the Nairobi Aquifer System, Kenya. Hydrol. J. 28, 2635–2656 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Castellazzi, P., Garfias, J. & Martel, R. Assessing the effectivity of mitigation measures to scale back groundwater depletion and associated land subsidence in Querétaro (Central Mexico) from decadal InSAR observations. Int. J. Appl. Earth Obs. Geoinf. 105, 102632 (2021).


    Google Scholar
     

  • Nguyen, M. et al. Evaluation of long-term floor subsidence and groundwater depletion in Hanoi, Vietnam. Eng. Geol. 299, 106555 (2022).

    Article 

    Google Scholar
     

  • Bui, L. Okay. et al. Latest land deformation detected by Sentinel-1A InSAR information (2016–2020) over Hanoi, Vietnam, and the connection with groundwater degree change. GISci. Distant Sens. 58, 161–179 (2021).

    Article 

    Google Scholar
     

  • Moshfika, M., Biswas, S. & Mondal, M. S. Assessing groundwater degree declination in Dhaka metropolis and figuring out adaptation choices for sustainable water provide. Sustainability 14, 1518 (2022).

    Article 

    Google Scholar
     

  • Sohail, M. T. et al. Groundwater budgeting of Nari and Gaj formations and groundwater mapping of Karachi, Pakistan. Appl. Water Sci. 12, 267 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dehghani, F., Mohammadi, Z. & Zare, M. Evaluation of groundwater depletion in a heterogeneous aquifer: historic reconnaissance and present scenario. Environ. Earth Sci. 80, 582 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Gautam, A., Rai, S. C. & Rai, S. P. Impression of anthropogenic actions on the alluvial aquifers of north-east Punjab, India. Environ. Monit. Assess. 192, 527 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sajjad, M. M. et al. Impression of local weather and land-use change on groundwater sources, research of Faisalabad district, Pakistan. Environment 13, 1097 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ouassanouan, Y. et al. Multi-decadal evaluation of water sources and agricultural change in a Mediterranean semiarid irrigated piedmont below water shortage and human interplay. Sci. Whole Environ. 834, 155328 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Goode, D. J., Senior, L. A., Subah, A. & Jaber, A. Groundwater-level tendencies and forecasts, and salinity tendencies, within the Azraq, Useless Sea, Hammad, Jordan Aspect Valleys, Yarmouk, and Zarqa groundwater basins, Jordan. U.S. Geological Survey Open-File Report 2013-1061. http://pubs.usgs.gov/of/2013/1061/ (2013).

  • Naeem, U. A. et al. Impression of urbanization on groundwater ranges in Rawalpindi Metropolis, Pakistan. Pure Appl. Geophys. 178, 491–500 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Snoussi, M., Jerbi, H. & Tarhouni, J. Built-in groundwater circulate modeling for managing a fancy alluvial aquifer case of research Mio-Plio-Quaternary Plain of Kairouan (Central Tunisia). Water 14, 668 (2022).

    Article 

    Google Scholar
     

  • Zghibi, A. et al. Implications of groundwater improvement and seawater intrusion for sustainability of a Mediterranean coastal aquifer in Tunisia. Environ. Monit. Assess. 191, 696 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cotterman, Okay. A., Kendall, A. D., Basso, B. & Hyndman, D. W. Groundwater depletion and local weather change: future prospects of crop manufacturing within the Central Excessive Plains Aquifer. Clim. Change 146, 187–200 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Orhan, O. Monitoring of land subsidence because of extreme groundwater extraction utilizing small baseline subset approach in Konya, Turkey. Environ. Monit. Assess. 193, 174 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Xia, J. et al. Evaluating the dynamics of groundwater depletion for an arid land within the Tarim Basin, China. Water 11, 186 (2019).

    Article 

    Google Scholar
     

  • Custodio, E. et al. Groundwater mining: advantages, issues and penalties in Spain. Maintain. Water Resour. Manag. 3, 213–226 (2017).

    Article 

    Google Scholar
     

  • Taher, T. M. Groundwater abstraction administration in Sana’a Basin, Yemen: a local people strategy. Hydrol. J. 24, 1593–1605 (2016).

    ADS 

    Google Scholar
     

  • Delinom, R. M. in Groundwater and Subsurface Environments (ed. Taniguchi, M.) 113–125 (Springer, 2011).

  • Taufiq, A. et al. Impression of extreme groundwater pumping on rejuvenation processes within the Bandung basin (Indonesia) as decided by hydrogeochemistry and modeling. Hydrol. J. 26, 1263–1279 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Zaryab, A., Nassery, H. R. & Alijani, F. The consequences of urbanization on the groundwater system of the Kabul shallow aquifers, Afghanistan. Hydrol. J. 30, 429–443 (2022).

    ADS 

    Google Scholar
     

  • Carrillo, M., Gomez, Y. A., Valle, S. & Prado, J. V. Habits of groundwater ranges in Texcoco Aquifer (1507) when they’re lowered by extreme pumping from 1968 via 2014. 2016 ASABE Annual Worldwide Assembly. American Society of Agricultural and Organic Engineers. https://elibrary.asabe.org/summary.asp?help=47273 (2016).

  • Ojha, C., Werth, S. & Shirzaei, M. Groundwater loss and aquifer system compaction in San Joaquin Valley throughout 2012–2015 drought. J. Geophys. Res. Stable Earth 124, 3127–3143 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noori, R. et al. Anthropogenic depletion of Iran’s aquifers. Proc. Natl Acad. Sci. 118, e2024221118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashraf, S., Nazemi, A. & AghaKouchak, A. Anthropogenic drought dominates groundwater depletion in Iran. Sci. Rep. 11, 9135 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saowiang, Okay. & Giao, P. H. Numerical evaluation of subsurface deformation induced by groundwater degree adjustments within the Bangkok aquifer system. Acta Geotech. 16, 1265–1279 (2021).

    Article 

    Google Scholar
     

  • Shi, W. et al. Spatial-temporal evolution of land subsidence and rebound over Xi’an in western China revealed by SBAS-InSAR evaluation. Distant Sens. 12, 3756 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Sartirana, D. et al. Information-driven determination administration of city underground infrastructure via groundwater-level time-series cluster evaluation: the case of Milan (Italy). Hydrol. J. 30, 1157–1177 (2022).

    ADS 

    Google Scholar
     

  • Houspanossian, J. et al. Agricultural enlargement raises groundwater and will increase flooding within the South American plains. Science 380, 1344–1348 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Galanter, A. E. & Curry, L. T. S. Estimated 2016 groundwater degree and drawdown from predevelopment to 2016 within the Santa Fe Group aquifer system within the Albuquerque space, central New Mexico. U.S. Geological Survey Scientific Investigations Map 3433. https://doi.org/10.3133/sim3433 (2019).

  • Hao, Y., Xie, Y., Ma, J. & Zhang, W. The essential function of native coverage results in arid watershed groundwater sources sustainability: a case research within the Minqin oasis, China. Sci. Whole Environ. 601, 1084–1096 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Furi, W., Razack, M., Haile, T., Abiye, T. A. & Legesse, D. The hydrogeology of Adama-Wonji basin and evaluation of groundwater degree adjustments in Wonji wetland, Foremost Ethiopian Rift: outcomes from 2D tomography and electrical sounding strategies. Environ. Earth Sci. 62, 1323–1335 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Özel, N., Bozdağ, Ş. & Baba, A. Impact of irrigation system on groundwater sources in Harran Plain (Southeastern Turkey). J. Meals Sci. Eng. 9, 45–51 (2023).


    Google Scholar
     

  • Duran-Llacer, I. et al. A brand new technique to map groundwater-dependent ecosystem zones in semi-arid environments: a case research in Chile. Sci. Whole Environ. 816, 151528 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pino, E. et al. Elements affecting depletion and air pollution by marine intrusion within the La Yarada’s coastal aquifer, Tacna, Peru. Tecnol. Cienc. Agua 10, 177–213 (2019).

    Article 

    Google Scholar
     

  • Vu, T. T. & Tran, N. V. T. Evaluation of urbanization affect on groundwater sources in Hanoi, Vietnam. J. Environ. Manag. 227, 107–116 (2018).

    Article 

    Google Scholar
     

  • Roy, S. Okay. & Zahid, A. Evaluation of declining groundwater ranges because of extreme pumping within the Dhaka District of Bangladesh. Environ. Earth Sci. 80, 333 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Taher, T., Bruns, B., Bamaga, O., Al-Weshali, A. & Van Steenbergen, F. Native groundwater governance in Yemen: constructing on traditions and enabling communities to craft new guidelines. Hydrol. J. 20, 1177–1188 (2012).

    ADS 

    Google Scholar
     

  • Rybakov, V. Water disaster in Yemen: speculations, realities and mitigation actions. https://static1.squarespace.com/static/5eb18d627d53aa0e85b60c65/t/5eda46ed1c956a6bc14ae36c/1591363321836/Report-victor.pdf (2012).

  • Abidin, H. Z. et al. Land subsidence and groundwater extraction in Bandung Basin, Indonesia. IAHS publication 329, 145–156 (2009).

  • Livoreil, B. et al. Systematic trying to find environmental proof utilizing a number of instruments and sources. Environ. Evid. 6, 23 (2017).

    Article 

    Google Scholar
     

  • Malakar, P. et al. Three many years of depth-dependent groundwater response to local weather variability and human regime within the transboundary Indus-Ganges-Brahmaputra-Meghna mega river basin aquifers. Adv. Water Res. 149, 103856 (2021).

    Article 

    Google Scholar
     

  • Taylor, C. J. & Alley, W. M. Floor-water-level monitoring and the significance of long-term water-level information. U.S. Geological Survey Round 1217 (2001).

  • Russo, T. A. & Lall, U. Depletion and response of deep groundwater to climate-induced pumping variability. Nat. Geosci. 10, 105–108 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hartmann, J. & Moosdorf, N. The brand new international lithological map database GLiM: a illustration of rock properties on the Earth floor. Geochem. Geophys. Geosyst. 13, Q12004 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Hora, T., Srinivasan, V. & Basu, N. B. The groundwater restoration paradox in South India. Geophys. Res. Lett. 46, 9602–9611 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Patle, G. T. et al. Time sequence evaluation of groundwater ranges and projection of future pattern. J. Geol. Soc. India 85, 232–242 (2015).

    Article 

    Google Scholar
     

  • Shamsudduha, M., Taylor, R. G., Ahmed, Okay. M. & Zahid, A. The affect of intensive groundwater abstraction on recharge to a shallow regional aquifer system: proof from Bangladesh. Hydrol. J. 19, 901–916 (2011).

    ADS 

    Google Scholar
     

  • Rushton, Okay. R., Zaman, M. A. & Mehedi Hasan, M. Sustainable abstraction because of unconfined circumstances in multi-layered aquifers: examples from northwest Bangladesh. Groundw. Maintain. Dev. 20, 100901 (2023).

    Article 

    Google Scholar
     

  • MacDonald, A. M. et al. Groundwater high quality and depletion within the Indo-Gangetic Basin mapped from in situ observations. Nat. Geosci. 9, 762–766 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • MacAllister, D. J., Krishan, G., Basharat, M., Cuba, D. & MacDonald, A. M. A century of groundwater accumulation in Pakistan and northwest India. Nat. Geosci. 15, 390396 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Perrone, D. & Jasechko, S. Dry groundwater wells within the western United States. Environ. Res. Lett. 12, 104002 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Perrone, D. & Jasechko, S. Deeper effectively drilling an unsustainable stopgap to groundwater depletion. Nat. Maintain. 2, 773–782 (2019).

    Article 

    Google Scholar
     

  • Jasechko, S. & Perrone, D. Hydraulic fracturing close to home groundwater wells. Proc. Natl Acad. Sci. 114, 13138–13143 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukherji, A., Rawat, S. & Shah, T. Main insights from India’s minor irrigation censuses: 1986-87 to 2006-07. Econ. Political Wkly. 48, 115–124 (2013).


    Google Scholar
     

  • Laghari, A. N., Vanham, D. & Rauch, W. The Indus basin within the framework of present and future water sources administration. Hydrol. Earth Syst. Sci. 16, 1063–1083 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, Okay. C. TerraClimate, a high-resolution international dataset of month-to-month local weather and climatic water steadiness from 1958–2015. Sci. Information 5, 170191 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karger, D. N., Wilson, A. M., Mahony, C. & Zimmermann, N. E. International every day 1 km land floor precipitation based mostly on cloud cover-informed downscaling. Sci. Information 8, 307 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here