Zila, V. et al. Cone-shaped HIV-1 capsids are transported via intact nuclear pores. Cell 184, 1032–1046 (2021).
Schmidt, H. B. & Görlich, D. Transport selectivity of nuclear pores, section separation and membraneless organelles. Tendencies Biochem. Sci. 41, 46–61 (2016).
Hülsmann, B. B., Labokha, A. A. & Görlich, D. The permeability of reconstituted nuclear pores gives direct proof for the selective section mannequin. Cell 150, 738–751 (2012).
Knockenhauer, Okay. E. & Schwartz, T. U. The nuclear pore complicated as a versatile and dynamic gate. Cell 164, 1162–1171 (2016).
Hampoelz, B. Andres-Pons, A., Kastritis, P. & Beck, M. Construction and meeting of the nuclear pore complicated. Annu. Rev. Biophys. 48, 515–536 (2019).
Ribbeck, Okay. & Görlich, D. Kinetic evaluation of translocation via nuclear pore complexes. EMBO J. 20, 1320–1330 (2001).
Görlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).
Matsuura, Y. Mechanistic insights from structural analyses of Ran-GTPase-driven nuclear export of proteins and RNAs. J. Mol. Biol. 428, 2025–2039 (2016).
Christie, M. et al. Structural biology and regulation of protein import into the nucleus. J. Mol. Biol. 428, 2060–2090 (2016).
Baumhardt, J. & Chook, Y. M. in Nuclear–Cytoplasmic Transport. Nucleic Acids and Molecular Biology Vol. 33 (ed. Yang, W.) 113–149 (Springer, 2018).
Damage, E. C. A novel nucleoskeletal-like protein situated on the nuclear periphery is required for the life cycle of Saccharomyces cerevisiae. EMBO J. 7, 4323–4334 (1988).
Wente, S. R., Rout, M. P. & Blobel, G. A brand new household of yeast nuclear pore complicated proteins. J. Cell Biol. 119, 705–723 (1992).
Bayliss, R. et al. Interplay between NTF2 and xFxFG-containing nucleoporins is required to mediate nuclear import of RanGDP. J. Mol. Biol. 293, 579–593 (1999).
Kehlenbach, R. H., Neumann, P., Ficner, R. & Dickmanns, A. Interplay of nucleoporins with nuclear transport receptors: a structural perspective. Biol. Chem. 404, 791–805 (2023).
Peters, R. Translocation via the nuclear pore complicated: selectivity and pace by reduction-of-dimensionality. Site visitors 6, 421–427 (2005).
Ben-Efraim, I. & Gerace, L. Gradient of accelerating affinity of importin β for nucleoporins alongside the pathway of nuclear import. J. Cell Biol. 152, 411–418 (2001).
Rout, M. P. et al. The yeast nuclear pore complicated. J. Cell Biol. 148, 635–652 (2000).
Lim, R. Y. et al. Nanomechanical foundation of selective gating by the nuclear pore complicated. Science 318, 640–643 (2007).
Frey, S., Richter, R. P. & Görlich, D. FG-rich repeats of nuclear pore proteins kind a three-dimensional meshwork with hydrogel-like properties. Science 314, 815–817 (2006).
Frey, S. & Görlich, D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130, 512–523 (2007).
Schmidt, H. B. & Görlich, D. Nup98 FG domains from various species spontaneously phase-separate into particles with nuclear pore-like permselectivity. eLife 4, e04251 (2015).
Lemke, E. A. The a number of faces of disordered nucleoporins. J. Mol. Biol. 428, 2011–2024 (2016).
Powers, M. A., Forbes, D. J., Dahlberg, J. E. & Lund, E. The vertebrate GLFG nucleoporin, Nup98, is an integral part of a number of RNA export pathways. J. Cell Biol. 136, 241–250 (1997).
Ori, A. et al. Cell type-specific nuclear pores: a working example for context-dependent stoichiometry of molecular machines. Mol. Syst. Biol. 9, 648 (2013).
Ng, S. C. et al. Barrier properties of Nup98 FG phases dominated by FG motif id and inter-FG spacer size. Nat. Commun. 14, 747 (2023).
Frey, S. et al. Floor properties figuring out passage charges of proteins via nuclear pores. Cell 174, 202–217 (2018).
Zila, V., Müller, T. G., Müller, B. & Kräusslich, H. G. HIV-1 capsid is the important thing orchestrator of early viral replication. PLoS Pathog. 17, e1010109 (2021).
Ganser-Pornillos, B. Okay., Yeager, M. & Sundquist, W. I. The structural biology of HIV meeting. Curr. Opin. Struct. Biol. 18, 203–217 (2008).
Sundquist, W. I. & Kräusslich, H. G. HIV-1 meeting, budding and maturation. Chilly Spring Harb. Perspect. Med. 2, a006924 (2012).
Panté, N. & Kann, M. Nuclear pore complicated is ready to transport macromolecules with diameters of about 39 nm. Mol. Biol. Cell 13, 425–434 (2002).
von Appen, A. et al. In situ structural evaluation of the human nuclear pore complicated. Nature 526, 140–143 (2015).
Burdick, R. C. et al. HIV-1 uncoats within the nucleus close to websites of integration. Proc. Natl Acad. Sci. USA 117, 5486–5493 (2020).
Li, C., Burdick, R. C., Nagashima, Okay., Hu, W. S. & Pathak, V. Okay. HIV-1 cores retain their integrity till minutes earlier than uncoating within the nucleus. Proc. Natl Acad. Sci. USA 118, e2019467118 (2021).
Mosalaganti, S. et al. AI-based construction prediction empowers integrative structural evaluation of human nuclear pores. Science 376, eabm9506 (2022).
Schuller, A. P. et al. The mobile setting shapes the nuclear pore complicated structure. Nature 598, 667–671 (2021).
Worth, A. J. et al. CPSF6 defines a conserved capsid interface that modulates HIV-1 replication. PLoS Pathog. 8, e1002896 (2012).
Matreyek, Okay. A., Yücel, S. S., Li, X. & Engelman, A. Nucleoporin NUP153 phenylalanine-glycine motifs have interaction a standard binding pocket inside the HIV-1 capsid protein to mediate lentiviral infectivity. PLoS Pathog. 9, e1003693 (2013).
Bhattacharya, A. et al. Structural foundation of HIV-1 capsid recognition by PF74 and CPSF6. Proc. Natl Acad. Sci. USA 111, 18625–18630 (2014).
Worth, A. J. et al. Host cofactors and pharmacologic ligands share a vital interface in HIV-1 capsid that’s misplaced upon disassembly. PLoS Pathog. 10, e1004459 (2014).
Buffone, C. et al. Nup153 unlocks the nuclear pore complicated for HIV-1 nuclear translocation in nondividing cells. J. Virol. 92, e00648–18 (2018).
Wei, G. et al. Prion-like low complexity areas allow avid virus–host interactions throughout HIV-1 an infection. Nat. Commun. 13, 5879 (2022).
Di Nunzio, F. et al. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication. Virology 440, 8–18 (2013).
Xue, G. et al. The HIV-1 capsid core is an opportunistic nuclear import receptor. Nat. Commun. 14, 3782 (2023).
Kane, M. et al. Nuclear pore heterogeneity influences HIV-1 an infection and the antiviral exercise of MX2. eLife 7, e35738 (2018).
Lau, D. et al. Self-assembly of fluorescent HIV capsid spheres for detection of capsid binders. Langmuir 36, 3624–3632 (2020).
Adam, S. A. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic elements. J. Cell Biol. 111, 807–816 (1990).
Solà Colom, M. et al. Nucleoporin-binding nanobodies that both monitor or inhibit nuclear pore complicated meeting. Preprint at bioRxiv https://doi.org/10.1101/2023.09.12.557426 (2023).
Görlich, D., Panté, N., Kutay, U., Aebi, U. & Bischoff, F. R. Identification of various roles for RanGDP and RanGTP in nuclear protein import. EMBO J. 15, 5584–5594 (1996).
Pornillos, O., Ganser-Pornillos, B. Okay., Banumathi, S., Hua, Y. & Yeager, M. Disulfide bond stabilization of the hexameric capsomer of human immunodeficiency virus. J. Mol. Biol. 401, 985–995 (2010).
Ng, S. C., Güttler, T. & Görlich, D. Recapitulation of selective nuclear import and export with a superbly repeated 12mer GLFG peptide. Nat. Commun. 12, 4047 (2021).
Bonner, W. M. Protein migration into nuclei. I. Frog oocyte nuclei in vivo accumulate microinjected histones, permit entry to small proteins and exclude giant proteins. J. Cell Biol. 64, 421–430 (1975).
Labokha, A. A. et al. Systematic evaluation of barrier-forming FG hydrogels from Xenopus nuclear pore complexes. EMBO J. 32, 204–218 (2013).
Schuh, M. & Ellenberg, J. Self-organization of MTOCs replaces centrosome operate throughout acentrosomal spindle meeting in dwell mouse oocytes. Cell 130, 484–498 (2007).
Fischer, D. Okay. et al. CA mutation N57A has distinct strain-specific HIV-1 capsid uncoating and infectivity phenotypes. J. Virol. 93, e00214–e00219 (2019).
Zhang, Z. et al. T = 4 icosahedral HIV-1 capsid as an immunogenic vector for HIV-1 V3 loop epitope show. Viruses 10, 667 (2018).
Schirra, R. T. et al. A molecular change modulates meeting and host issue binding of the HIV-1 capsid. Nat. Struct. Mol. Biol. 30, 383–390 (2023).
Dick, R. A. et al. Inositol phosphates are meeting co-factors for HIV-1. Nature 560, 509–512 (2018).
Isgro, T. A. & Schulten, Okay. Binding dynamics of remoted nucleoporin repeat areas to importin-β. Construction 13, 1869–1879 (2005).
Port, S. A. et al. Structural and useful characterization of CRM1–Nup214 interactions reveals a number of FG-binding websites concerned in nuclear export. Cell Rep. 13, 690–702 (2015).
Bejarano, D. A. et al. HIV-1 nuclear import in macrophages is regulated by CPSF6–capsid interactions on the nuclear pore complicated. eLife 8, e41800 (2019).
Sowd, G. A. et al. A crucial function for different polyadenylation issue CPSF6 in concentrating on HIV-1 integration to transcriptionally lively chromatin. Proc. Natl Acad. Sci. USA 113, E1054–E1063 (2016).
Achuthan, V. et al. Capsid–CPSF6 interplay licenses nuclear HIV-1 trafficking to websites of viral DNA integration. Cell Host Microbe 24, 392–404 (2018).
Campbell, E. M. & Hope, T. J. HIV-1 capsid: the multifaceted key participant in HIV-1 an infection. Nat. Rev. Microbiol. 13, 471–483 (2015).
Güttler, T. et al. NES consensus redefined by constructions of PKI-type and Rev-type nuclear export alerts sure to CRM1. Nat. Struct. Mol. Biol. 17, 1367–1376 (2010).
Frey, S. & Görlich, D. A brand new set of extremely environment friendly, tag-cleaving proteases for purifying recombinant proteins. J. Chromatogr. A 1337, 95–105 (2014).
Andersen, Okay. R., Leksa, N. C. & Schwartz, T. U. Optimized E. coli expression pressure LOBSTR eliminates widespread contaminants from His-tag purification. Proteins 81, 1857–1861 (2013).