Home Natuur HIV-1 capsids enter the FG section of nuclear pores like a transport receptor

HIV-1 capsids enter the FG section of nuclear pores like a transport receptor

0
HIV-1 capsids enter the FG section of nuclear pores like a transport receptor


  • Zila, V. et al. Cone-shaped HIV-1 capsids are transported via intact nuclear pores. Cell 184, 1032–1046 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, H. B. & Görlich, D. Transport selectivity of nuclear pores, section separation and membraneless organelles. Tendencies Biochem. Sci. 41, 46–61 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hülsmann, B. B., Labokha, A. A. & Görlich, D. The permeability of reconstituted nuclear pores gives direct proof for the selective section mannequin. Cell 150, 738–751 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Knockenhauer, Okay. E. & Schwartz, T. U. The nuclear pore complicated as a versatile and dynamic gate. Cell 164, 1162–1171 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hampoelz, B. Andres-Pons, A., Kastritis, P. & Beck, M. Construction and meeting of the nuclear pore complicated. Annu. Rev. Biophys. 48, 515–536 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ribbeck, Okay. & Görlich, D. Kinetic evaluation of translocation via nuclear pore complexes. EMBO J. 20, 1320–1330 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Görlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Matsuura, Y. Mechanistic insights from structural analyses of Ran-GTPase-driven nuclear export of proteins and RNAs. J. Mol. Biol. 428, 2025–2039 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christie, M. et al. Structural biology and regulation of protein import into the nucleus. J. Mol. Biol. 428, 2060–2090 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baumhardt, J. & Chook, Y. M. in Nuclear–Cytoplasmic Transport. Nucleic Acids and Molecular Biology Vol. 33 (ed. Yang, W.) 113–149 (Springer, 2018).

  • Damage, E. C. A novel nucleoskeletal-like protein situated on the nuclear periphery is required for the life cycle of Saccharomyces cerevisiae. EMBO J. 7, 4323–4334 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wente, S. R., Rout, M. P. & Blobel, G. A brand new household of yeast nuclear pore complicated proteins. J. Cell Biol. 119, 705–723 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bayliss, R. et al. Interplay between NTF2 and xFxFG-containing nucleoporins is required to mediate nuclear import of RanGDP. J. Mol. Biol. 293, 579–593 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kehlenbach, R. H., Neumann, P., Ficner, R. & Dickmanns, A. Interplay of nucleoporins with nuclear transport receptors: a structural perspective. Biol. Chem. 404, 791–805 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peters, R. Translocation via the nuclear pore complicated: selectivity and pace by reduction-of-dimensionality. Site visitors 6, 421–427 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ben-Efraim, I. & Gerace, L. Gradient of accelerating affinity of importin β for nucleoporins alongside the pathway of nuclear import. J. Cell Biol. 152, 411–418 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rout, M. P. et al. The yeast nuclear pore complicated. J. Cell Biol. 148, 635–652 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, R. Y. et al. Nanomechanical foundation of selective gating by the nuclear pore complicated. Science 318, 640–643 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Frey, S., Richter, R. P. & Görlich, D. FG-rich repeats of nuclear pore proteins kind a three-dimensional meshwork with hydrogel-like properties. Science 314, 815–817 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Frey, S. & Görlich, D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130, 512–523 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, H. B. & Görlich, D. Nup98 FG domains from various species spontaneously phase-separate into particles with nuclear pore-like permselectivity. eLife 4, e04251 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemke, E. A. The a number of faces of disordered nucleoporins. J. Mol. Biol. 428, 2011–2024 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powers, M. A., Forbes, D. J., Dahlberg, J. E. & Lund, E. The vertebrate GLFG nucleoporin, Nup98, is an integral part of a number of RNA export pathways. J. Cell Biol. 136, 241–250 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ori, A. et al. Cell type-specific nuclear pores: a working example for context-dependent stoichiometry of molecular machines. Mol. Syst. Biol. 9, 648 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng, S. C. et al. Barrier properties of Nup98 FG phases dominated by FG motif id and inter-FG spacer size. Nat. Commun. 14, 747 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frey, S. et al. Floor properties figuring out passage charges of proteins via nuclear pores. Cell 174, 202–217 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zila, V., Müller, T. G., Müller, B. & Kräusslich, H. G. HIV-1 capsid is the important thing orchestrator of early viral replication. PLoS Pathog. 17, e1010109 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganser-Pornillos, B. Okay., Yeager, M. & Sundquist, W. I. The structural biology of HIV meeting. Curr. Opin. Struct. Biol. 18, 203–217 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sundquist, W. I. & Kräusslich, H. G. HIV-1 meeting, budding and maturation. Chilly Spring Harb. Perspect. Med. 2, a006924 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panté, N. & Kann, M. Nuclear pore complicated is ready to transport macromolecules with diameters of about 39 nm. Mol. Biol. Cell 13, 425–434 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • von Appen, A. et al. In situ structural evaluation of the human nuclear pore complicated. Nature 526, 140–143 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Burdick, R. C. et al. HIV-1 uncoats within the nucleus close to websites of integration. Proc. Natl Acad. Sci. USA 117, 5486–5493 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C., Burdick, R. C., Nagashima, Okay., Hu, W. S. & Pathak, V. Okay. HIV-1 cores retain their integrity till minutes earlier than uncoating within the nucleus. Proc. Natl Acad. Sci. USA 118, e2019467118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosalaganti, S. et al. AI-based construction prediction empowers integrative structural evaluation of human nuclear pores. Science 376, eabm9506 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schuller, A. P. et al. The mobile setting shapes the nuclear pore complicated structure. Nature 598, 667–671 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Worth, A. J. et al. CPSF6 defines a conserved capsid interface that modulates HIV-1 replication. PLoS Pathog. 8, e1002896 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matreyek, Okay. A., Yücel, S. S., Li, X. & Engelman, A. Nucleoporin NUP153 phenylalanine-glycine motifs have interaction a standard binding pocket inside the HIV-1 capsid protein to mediate lentiviral infectivity. PLoS Pathog. 9, e1003693 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhattacharya, A. et al. Structural foundation of HIV-1 capsid recognition by PF74 and CPSF6. Proc. Natl Acad. Sci. USA 111, 18625–18630 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Worth, A. J. et al. Host cofactors and pharmacologic ligands share a vital interface in HIV-1 capsid that’s misplaced upon disassembly. PLoS Pathog. 10, e1004459 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buffone, C. et al. Nup153 unlocks the nuclear pore complicated for HIV-1 nuclear translocation in nondividing cells. J. Virol. 92, e00648–18 (2018).

  • Wei, G. et al. Prion-like low complexity areas allow avid virus–host interactions throughout HIV-1 an infection. Nat. Commun. 13, 5879 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Nunzio, F. et al. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication. Virology 440, 8–18 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Xue, G. et al. The HIV-1 capsid core is an opportunistic nuclear import receptor. Nat. Commun. 14, 3782 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kane, M. et al. Nuclear pore heterogeneity influences HIV-1 an infection and the antiviral exercise of MX2. eLife 7, e35738 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lau, D. et al. Self-assembly of fluorescent HIV capsid spheres for detection of capsid binders. Langmuir 36, 3624–3632 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adam, S. A. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic elements. J. Cell Biol. 111, 807–816 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solà Colom, M. et al. Nucleoporin-binding nanobodies that both monitor or inhibit nuclear pore complicated meeting. Preprint at bioRxiv https://doi.org/10.1101/2023.09.12.557426 (2023).

  • Görlich, D., Panté, N., Kutay, U., Aebi, U. & Bischoff, F. R. Identification of various roles for RanGDP and RanGTP in nuclear protein import. EMBO J. 15, 5584–5594 (1996).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pornillos, O., Ganser-Pornillos, B. Okay., Banumathi, S., Hua, Y. & Yeager, M. Disulfide bond stabilization of the hexameric capsomer of human immunodeficiency virus. J. Mol. Biol. 401, 985–995 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng, S. C., Güttler, T. & Görlich, D. Recapitulation of selective nuclear import and export with a superbly repeated 12mer GLFG peptide. Nat. Commun. 12, 4047 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonner, W. M. Protein migration into nuclei. I. Frog oocyte nuclei in vivo accumulate microinjected histones, permit entry to small proteins and exclude giant proteins. J. Cell Biol. 64, 421–430 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Labokha, A. A. et al. Systematic evaluation of barrier-forming FG hydrogels from Xenopus nuclear pore complexes. EMBO J. 32, 204–218 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schuh, M. & Ellenberg, J. Self-organization of MTOCs replaces centrosome operate throughout acentrosomal spindle meeting in dwell mouse oocytes. Cell 130, 484–498 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fischer, D. Okay. et al. CA mutation N57A has distinct strain-specific HIV-1 capsid uncoating and infectivity phenotypes. J. Virol. 93, e00214–e00219 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z. et al. T = 4 icosahedral HIV-1 capsid as an immunogenic vector for HIV-1 V3 loop epitope show. Viruses 10, 667 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schirra, R. T. et al. A molecular change modulates meeting and host issue binding of the HIV-1 capsid. Nat. Struct. Mol. Biol. 30, 383–390 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dick, R. A. et al. Inositol phosphates are meeting co-factors for HIV-1. Nature 560, 509–512 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isgro, T. A. & Schulten, Okay. Binding dynamics of remoted nucleoporin repeat areas to importin-β. Construction 13, 1869–1879 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Port, S. A. et al. Structural and useful characterization of CRM1–Nup214 interactions reveals a number of FG-binding websites concerned in nuclear export. Cell Rep. 13, 690–702 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bejarano, D. A. et al. HIV-1 nuclear import in macrophages is regulated by CPSF6–capsid interactions on the nuclear pore complicated. eLife 8, e41800 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sowd, G. A. et al. A crucial function for different polyadenylation issue CPSF6 in concentrating on HIV-1 integration to transcriptionally lively chromatin. Proc. Natl Acad. Sci. USA 113, E1054–E1063 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Achuthan, V. et al. Capsid–CPSF6 interplay licenses nuclear HIV-1 trafficking to websites of viral DNA integration. Cell Host Microbe 24, 392–404 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campbell, E. M. & Hope, T. J. HIV-1 capsid: the multifaceted key participant in HIV-1 an infection. Nat. Rev. Microbiol. 13, 471–483 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Güttler, T. et al. NES consensus redefined by constructions of PKI-type and Rev-type nuclear export alerts sure to CRM1. Nat. Struct. Mol. Biol. 17, 1367–1376 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Frey, S. & Görlich, D. A brand new set of extremely environment friendly, tag-cleaving proteases for purifying recombinant proteins. J. Chromatogr. A 1337, 95–105 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andersen, Okay. R., Leksa, N. C. & Schwartz, T. U. Optimized E. coli expression pressure LOBSTR eliminates widespread contaminants from His-tag purification. Proteins 81, 1857–1861 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here